BONES OF THE KNEE JOINT

Shaft and Distal Femur

- Linea aspera gives rise to quadriceps.
- Flatten into supracondylar ridges
- End in condyles, joined anteriorly and separate posteriorly
- Condyles differ from one another

MEDIAL CONDYLE

- Extends farther distally, contributing to oblique alignment of shaft
- Articular surface differs from lateral and influences tibiofemoral motion.
- Radius of curvature is greatest distally, smaller posteriorly.

LATERAL CONDYLE

- Lies closer to sagittal plane
- Flattest distally
- Radius of curvature for tibiofemoral articular surfaces similar in medial and lateral condyles

Proximal Tibia

- Large proximally, with two separate articular surfaces
- Tibial plateaus slope posteriorly
- Palpable landmarks

ARTICULAR SURFACES OF THE PROXIMAL TIBIA

- Smaller than femoral surfaces
- Articular surface of medial plateau larger than lateral, decreasing stress
- Medial plateau is biconcave and relatively flat.
- Lateral plateau convex anterior to posterior

Effects of the Shapes of the Articular Surfaces on Tibiofemoral Joint Motion

- Differences in articular surface size between tibia and fibula
- Differences between medial and lateral femoral condyles
- Variation in curvatures of all surfaces

DISPARITY BETWEEN THE TIBIAL AND FEMORAL SURFACES

- Moving limb must undergo more complex motion than just rolling.

DISPARITY BETWEEN THE SIZE OF THE MEDIAL AND LATERAL FEMORAL CONDYLES

- Increases frontal and transverse plane motions
VARIABILITY OF CURVATURE IN ALL OF THE ARTICULAR SURFACES OF THE TIBIOFEMORAL JOINT

- Tibiofemoral joint motion varies with knee joint position.

Tibiofemoral Motion

- Knee exhibits three-dimensional motion.
- Medial rotation of femur accompanies knee extension or lateral rotation with flexion.
- Contact migrates posteriorly with flexion and anteriorly with extension.
- Small anterior-posterior and medial-lateral translations occur in flexion and extension.
- Medial femoral condyle translates less than lateral condyle
- Motion not consistent with concave-convex rule
- Femoral rotation occurs throughout most of flexion-extension ROM.
- Rate of femoral rotation greatest near full extension ROM, consistent with “screw-home” mechanism
- Relative motion of tibia and femur are the same in open- and closed-chain movements.
- Knee has six degrees of freedom (DOFs).

Patella

- Largest sesamoid bone
- Three facets on articular surface
- Protects quadriceps from excessive friction
- Increases angle of application of quadriceps

Proximal Fibula

- Provides muscle and ligamentous attachments for knee

Palpable Landmarks of the Knee

- Several important palpable landmarks

ARTICULAR STRUCTURES OF THE KNEE

- Tibiofemoral joint is synovial, modified hinge.
- Patellofemoral joint is synovial, gliding

Organization of the Trabecular Bone and Articular Cartilage Found in the Knee

- Trabecular bone is organized according to applied loads.
- Thickest articular cartilage of the body, which helps improve congruity of articular surfaces, decreasing stress

Menisci

STRUCTURE

- Fibrocartilaginous discs, covering more than 50% of tibial articular surface
- More coverage by lateral meniscus
Firmly attached to tibia, medial more so than lateral
Medial meniscus attached to capsule and medial collateral ligament

FUNCTION OF THE MENISCI

- Protect joint health
- Joint lubrication, shock absorption, stabilization, stress reduction, guide and control tibiofemoral joint motion
- Approximately doubles contact area

Motion of the Menisci on the Tibia

- Move with rolling femoral condyles, posteriorly in flexion, anteriorly in extension
- Menisci deform during flexion and extension.

MENISCAL LESIONS

- Susceptible to injury because of position between two longest bones, attached to tibia, distortion during knee motion

Noncontractile Supporting Structures

- Capsule and ligaments work together to support the knee.

ARTICULARCAPSULE OF THE KNEE JOINT

- Largest joint capsule
- Reinforced anteriorly by patellar retinaculi
- Synovial and fibrous layers separate posteriorly
- No anterior femoral attachment of fibrous capsule.
- Medial and lateral attachments to patellar are reinforced by patellofemoral and patellotibial ligaments and my the medial and lateral patellar retinaculi.
- Anterior expansion of synovial layer is suprapatellar pouch
- Folds in synovial layer are plicae

COLLATERAL LIGAMENTS

- Medial is larger and stronger than lateral, with deep and superficial layers.
- Medial withstands valgus stresses, lateral, varus stresses.
- Both also contribute to rotational stability.
- Knee position alters stretch of collateral ligaments.
- Collateral ligaments provide the primary medio-lateral support with the knee flexed to about 20°.

CRUCIATE LIGAMENTS

- Intracapsular and extrasynovial
- Each consists of multiple segments, or bundles.
- Anterior cruciate ligament (ACL) limits anterior glide of tibia on femur.
- ACL also limits rotation and resists valgus loads.
- Non-contact injuries of ACL often involve lateral rotation and abduction of tibia with respect to femur.
- Knee flexion affects tension in ACL.
- ACL limits extension and with menisci is primary limiter of extension ROM.
- Results of ACL clinical assessments depend on knee position during test, portion of ligament torn, force of test, and integrity of other tissues.
- No single test to assess specific bundles of ACL
- Posterior cruciate ligament (PCL) also has a complex stabilizing role.
- PCL limits posterior glide of tibia, maximum knee flexion, varus, valgus, and lateral rotation.
ACCESSORY LIGAMENTS OF THE KNEE

- Found posteriorly and laterally
- Secondary supporting function, reinforcing cruciate ligaments
- Injuries to PCL and accessory ligaments produce significant instability

CONCLUSIONS REGARDING THE CONNECTIVE TISSUE SUPPORT OF THE KNEE

- Collaterals are primary medial–lateral supports, but cruciates add support.
- Cruciates are primary anterior-posterior support, but collaterals and accessory ligaments aid in support.
- Rotary stability is added by all four ligaments.
- Menisci and articular surfaces also stabilize the knee.

NORMAL ALIGNMENT OF THE KNEE JOINT

- Affected by foot, ankle, and hip alignment
- Affects joint stresses

Frontal Plane Alignment

- Using anatomical axis, normal adult knees exhibit small valgus angles. Using mechanical axis, normal adult alignment is very slight varus.
- Newborn exhibits varus that changes during development.

Sagittal Plane Alignment

- Normal alignment of 180°

Transverse Plane Alignment

- Normal version is 0°

ALIGNMENT OF THE PATELLOFEMORAL JOINT

- Described by linear and angular positions

Medial–Lateral Alignment

- Slight lateral deviation is normal.
- Abnormal alignment described by medial or lateral tracking

Proximal–Distal Alignment

- Ratio of distance between tibia and patella and length of patella

Angular Positioning of the Patella

PATELLAR TILT

- Transverse plane angle between plane of femoral condyles and width of patella

SUCULUS ANGLE
Instructor’s Manual

Chapter 41

- Angle between lines from floor of sulcus to highest point on each condyle
- Varies with location on femur

CONGRUENCE ANGLE

- Measures how well patella fits in sulcus
- Angle between line bisecting sulcus and a line from sulcus to apex of patellar ridge
- Malalignments associated with knee joint disorders

MOTION OF THE KNEE

- Complex three-dimensional motion

Normal Range of Motion of the Knee in the Sagittal Plane

- Hyperextension ROM is uncommon.
- ROM changes with age.
- Functional requirements vary with tasks.

Transverse and Frontal Plane Rotations of the Knee

- Not well studied
- Small and variable
- Small excursions in both planes are seen in locomotion.

Patellofemoral Motion

- Depends on knee position
- In extension, patella is movable.
- Total medial-lateral excursion up to half of width of patella appears normal with knee extended, lateral excursion slightly greater than lateral.
- In knee flexion, patella lies in trochlear notch and is less mobile.

TRANSLATION OF THE PATELLA DURING KNEE FLEXION

- 5–7 cm of distal glide with knee flexion
- Allowed by unfolding of suprapatellar pouch
- Translates medially in initial flexion then begins lateral translation after 20° - 30° of flexion, continuing until at least 90°

ROTATION OF THE PATELLA DURING KNEE FLEXION

- Flexes as knee flexes
- Tilts laterally as knee flexes until at least 90° of knee flexion
- Rotation about anterior posterior axis is negligible.
- Contact on patella moves proximally and increases in area as the knee flexes from the extended position to at least 60° of knee flexion. Patellar contact in maximum knee flexion occurs in an arch on the lateral and odd facets of the patella and on the proximal articular surface of the patella.

SUMMARY