# Special Types of Intravenous Calculations 

1. Amount of drug in a solution
2. Rules and calculations for special IV orders
3. Units/hr, mg/hr, g/hr, mL/hr, $\mathrm{mg} / \mathrm{min}$, milliunits/min, $\mathrm{mcg} / \mathrm{min}, \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$
4. Use of the body surface nomogram
5. Calculating metres squared for IV medications
6. Special types of calculation: heparin, insulin
7. Patient-controlled analgesia

In Chapter 8, we studied calculations for microdrip and macrodrip factors, the use of the infusion pump, and IVPB orders. In this chapter, we consider calculations for orders written in units, milliunits, milligrams, and micrograms; special types of calculations in relation to continuous heparin infusion and continuous insulin infusion; methods of calculating the safety of doses based on kilograms of body weight and body surface area (BSA); and the handling of orders for patient-controlled analgesia (PCA).

This chapter's dosage calculations are for medications mixed in IV fluids and delivered as continuous infusions. Administering these medications via infusion pumps ensures a correct rate and accuracy of dose (Fig. 9-1). Many infusion pumps can deliver rates less than 1 (e.g., $0.5 \mathrm{~mL} / \mathrm{hr}, 0.25 \mathrm{~mL} / \mathrm{hr}$ ), and they also can be programmed with the amount of drug, amount of solution, patient's weight, and time unit (minutes or hours). Once the pump is set at an infusion rate, the pump calculates how much drug the patient is receiving. The nurse, however, still bears the responsibility for double-checking the calculation and entering the correct information on the infusion pump.

Because many of the medications that infuse via continuous infusions are very potent, small changes in the infusion rate can greatly affect the body's physiologic response. In particular, vasopressor drugs such as dopamine, epinephrine, dobutamine, and Levophed can affect the patient's blood pressure and heart rate, even in small doses. In many hospital settings, the pharmacy prepares medications and IV solutions.

## — Amount of Drug in a Solution

These calculations can be complicated. One helpful technique is reduction: Start with the entire amount of drug mixed in solution, and then reduce it to the amount of the drug in only 1 mL of solution. Here's an example:

Heparin is mixed 25,000 units in 500 mL D5W.
How much heparin is in 1 mL of fluid?


## FIGURE 9-1

Infusion pump. (With permission from Evans-Smith, P. [2005]. Taylor's clinical nursing skills. Philadelphia: Lippincott Williams \& Wilkins.)
Formula Method
$\frac{25000 \text { units }}{500 \mathrm{~mL}} \times 1 \mathrm{~mL}=\mathrm{x}$
50 units

| Proportion Expressed |
| :---: |
| as Two Ratios |

25000 units :500 mL: :x $: 1 \mathrm{~mL}$$|$| $\frac{25000 \mathrm{units}}{500 \mathrm{~mL}} \times \frac{\mathrm{x}}{1 \mathrm{~mL}}$ |
| :---: |
| as Two Fractions |

Here's a simple formula you can use to find concentration:

$$
\frac{\text { Amount of Drug }}{\text { Amount of Fluid }(\mathrm{mL})}=\text { Amount of Drug in } 1 \mathrm{~mL}
$$

Occasionally, the amount of medication to be added to an IV solution exceeds the capacity of the contained (bag/bottle) by approximately $10 \%$ or more (e.g., $<10 \mathrm{~mL}$ in a $100-\mathrm{mL}$ bag). If this occurs, an amount equal to the medication volume being added must first be removed using aseptic techniques (needle and syringe).

## —— Medications Ordered in Units/hr or mg/hr

Sometimes patient medications are administered as continuous IVs. For these medications, solutions are standardized to decrease the possibility of error. Check the guidelines (institutional or drug references) to verify dose, dilution, and rate. If any doubts exist, consult with the prescribing physician or healthcare provider.

## Units/hr-Rule and Calculation

The order will indicate the amount of drug to be added to the IV fluid and also the amount to administer.

Example Order: heparin, infuse 800 units/hr
Available: heparin 40,000 units in 1000 mL D5W infusion pump
You know the solution and the amount to administer. Because you'll be using an infusion pump, the answer will be in $\mathrm{mL} / \mathrm{hr}$.

Formula Mothod
$\frac{800}{20, \text { units } / \mathrm{hr}}$
40,000 units
40
1
$20 \mathrm{~mL} / \mathrm{hr}$ on a pump
Note that units cancel out
and the answer is $\mathrm{mL} / \mathrm{hr}$.

## Proportion Expressed as Two Ratios

$1000 \mathrm{~mL}: 40000$ units : : x mL : 800 units
$\qquad$

Proportion Expressed as Two Fractions


$$
\begin{aligned}
40,000 \mathrm{x} & =800000 \\
\frac{800000}{40000} & =x \\
20 \mathrm{~mL} / \mathrm{hr} & =x
\end{aligned}
$$

How many hours will the IV run?
$\frac{\text { Number } \mathrm{mL}}{\text { Number } \mathrm{mL} / \mathrm{hr}}$
$\frac{1000 \mathrm{~mL}}{20 \mathrm{~mL} / \mathrm{hr}}=50$ hours

Note: Most hospitals require changing the IV fluids every 24 hours.
Example Order: heparin sodium 1100 units/hr IV
Supply: infusion pump, standard solution of 25,000 units in 250 mL D5W

With an infusion pump, the answer will be in $\mathrm{mL} / \mathrm{hr}$.


Formula Method
$\frac{1100 \text { units } / \mathrm{hr}}{25,000 \text { units }} \times 250 \mathrm{~mL}=$
$=11 \mathrm{~mL} / \mathrm{hr}$

Proportion Expressed as Two Ratios

Proportion Expressed as Two Fractions
$250 \mathrm{~mL}: 25000$ units : : x mL:1100 units
$\frac{275000}{25000}=\mathrm{x} \mathrm{mL}$
$11 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$

How many hours will the IV run?
$\frac{\text { Number } \mathrm{mL}}{\text { Number } \mathrm{mL} / \mathrm{hr}}$
$\frac{250 \mathrm{~mL}}{11 \mathrm{~mL} / \mathrm{hr}}=22.75$ or 23 hours

Example Order: regular insulin 10 units/hr IV
Available: infusion pump, standard solution of 125 units regular insulin in 250 mL NS

$=20 \mathrm{~mL} / \mathrm{hr}$ on a pump

$$
\begin{aligned}
& \stackrel{\begin{array}{c}
\text { Proportion Expressed } \\
\text { as Two Ratios }
\end{array}}{\stackrel{25 \mathrm{~mL}: 125 \text { units }:: \mathrm{x} \mathrm{~mL}: 10 \mathrm{units}}{ } \mid} \begin{array}{c}
\begin{array}{c}
\text { Proportion Expressed } \\
\text { as Two Fractions }
\end{array} \\
\qquad \begin{array}{c}
\frac{2500}{125 \mathrm{units}} \\
20 \mathrm{~mL} / \mathrm{hr}=
\end{array}=\mathrm{x} \mathrm{~mL}
\end{array}
\end{aligned}
$$

How many hours will the IV run?
$\frac{\text { Number } \mathrm{mL}}{\text { Number } \mathrm{mL} / \mathrm{hr}}$
$\frac{250 \mathrm{~mL}}{20 \mathrm{~mL} / \mathrm{hr}}=12.5$ or approximately 13 hours

## mg/hr; g/hr-Rule and Calculation

The order will indicate the amount of drug added to the IV fluid and the amount to administer.
Example
Order: calcium gluconate 2 g in 100 mL D5W; run $0.25 \mathrm{~g} / \mathrm{hr}$ IV via infusion pump.

Because we know the solution and the amount of drug per hour, we can solve the problem and administer the drug in $\mathrm{mL} / \mathrm{hr}$ per infusion pump. Round the final answer to the nearest whole number.


## Formula Method

$\frac{0.25 \mathrm{~g} / \mathrm{hr}}{\frac{2 \mathrm{~g}}{1}} \times 100 \mathrm{~mL}=12.5$
$13 \mathrm{~mL} / \mathrm{hr}$ on a pump

| $\begin{array}{c}\text { Proportion Expressed } \\ \text { as Two Ratios }\end{array}$ |
| :---: |
| $100 \mathrm{~mL}: 2 \mathrm{~g}:: \mathrm{x} \mathrm{mL}: 0.25 \mathrm{~g}$ |

Proportion Expressed as Two Fractions
$\frac{\mathrm{x} \mathrm{mL}}{0.25 \mathrm{~g} / \mathrm{hr}} \times \frac{100 \mathrm{~mL}}{2 \mathrm{~g}}$

$$
\frac{25}{2}=x
$$

12.5 or $13 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$

How many hours will the IV run?
Number mL
Number mL/hr
$\frac{100 \mathrm{~mL}}{13 \mathrm{~mL} / \mathrm{hr}}=7.6$ or approximately 8 hours

Example Order: aminophylline 250 mg in 250 mL D5W; run $65 \mathrm{mg} / \mathrm{hr}$ IV per infusion pump.


Formula Method
$\frac{65 \mathrm{mg} / \mathrm{hr}}{250 \mathrm{mg}} \times \stackrel{1}{25 Q} \mathrm{~mL}$
$=65 \mathrm{~mL} / \mathrm{hr}$ on a pump

Proportion Expressed as Two Ratios
$250 \mathrm{~mL}: 250 \mathrm{mg}:$ : x mL: 65 mg

Proportion Expressed as Two Fractions
$\frac{\mathrm{x} \mathrm{mL}}{65 \mathrm{mg}} \times \frac{250 \mathrm{~mL}}{250 \mathrm{mg}}$

$$
\begin{aligned}
& \frac{65 \times 25 \mathrm{Q}}{25 \mathrm{Q}}=\mathrm{x} \\
& 65 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}
\end{aligned}
$$

How many hours will the IV run?

[^0]SELF TEST 1 Infusion Rates
Solve the following problems. Answers appear at the end of this chapter.

1. Order: heparin sodium 800 units/hr IV

Supply: infusion pump, standard solution of 25,000 units in 250 mL D5W
a. What is the rate?
b. How many hours will the IV run?
2. Order: Zovirax (acyclovir) 500 mg in 100 mL D5W IV over 1 hr

Supply: pump, Zovirax (acyclovir) 500 mg in 100 mL
What is the rate?
3. Order: Amicar (aminocaproic acid) 24 g in $1,000 \mathrm{~mL}$ D5W over 24 hr IV Supply: infusion pump, vials of Amicar (aminocaproic acid) labelled $5 \mathrm{~g} / 20 \mathrm{~mL}$ What is the rate?
4. Order: $\quad$ Cardizem (diltiazem) 125 mg in 100 mL D5W at $10 \mathrm{mg} / \mathrm{hr} \mathrm{IV}$ Supply: infusion pump, vial of Cardizem (diltiazem) labelled $5 \mathrm{mg} / \mathrm{mL}$ What is the rate?
5. Order: Lasix (furosemide) 100 mg in 100 mL D5W; infuse $4 \mathrm{mg} / \mathrm{hr}$ Supply: infusion pump, vial of Lasix (furosemide) labelled $10 \mathrm{mg} / \mathrm{mL}$ What is the rate?
6. Order: regular insulin 15 units/hr IV

Supply: standard solution of 125 units in 250 mL NS , infusion pump
a. What is the drip rate?
b. How many hours will this IV run?
7. Order: nitroglycerin 50 mg in 250 mL D5W over 24 hr via pump What is the drip rate?
8. Order: heparin 1200 units/hr IV

Supply: infusion pump, standard solution of 25,000 units in 500 mL D5W
a. What is the rate?
b. How many hours will the IV run?
9. Order: regular insulin 23 units/hr IV

Supply: infusion pump, standard solution of 250 units in 250 mL NS
a. What is the rate?
b. How many hours will the IV run?
10. Order: Streptase (streptokinase) 100,000 international units/hr for 24 hr IV Supply: infusion pump, standard solution of 750,000 international units in 250 mL NS What is the rate?

## mg/min-Rule and Calculation

The order will indicate the amount of drug added to IV fluid and also the amount of drug to administer. These medications are administered through an IV infusion pump in $\mathrm{mL} / \mathrm{hr}$.

## Example

Order: Bretylol (bretylium) $1 \mathrm{mg} / \mathrm{min}$ IV
Supply: infusion pump, standard solution of 1 g in 500 mL D5W ( 1000 mg in 500 mL )
The order calls for $1 \mathrm{mg} / \mathrm{min}$. You need $\mathrm{mL} / \mathrm{hr}$ for the pump.
Convert the order to $\mathrm{mg} / \mathrm{hr}$, by multiplying the drug amount by 60 ( 60 minutes $=1$ hour).
$1 \mathrm{mg} / \mathrm{min} \times 60=60 \mathrm{mg} / \mathrm{hr}$


Formula Method
30
$\frac{60 \mathrm{mg} / \mathrm{hr}}{1000 \mathrm{mg}} \times 50 \mathrm{Q} \mathrm{mL}=30 \mathrm{~mL} / \mathrm{hr}$ $\stackrel{2}{1}$

Set pump at $30 \mathrm{~mL} / \mathrm{hr}$.

| Proportion Expressed <br> as Two Ratios <br> $500 \mathrm{~mL}: 1000 \mathrm{mg}:: \mathrm{x} \mathrm{mL}: 60 \mathrm{mg}$ | Proportion Expressed <br> as Two Fractions |
| ---: | :--- |
| $\frac{\mathrm{x} \mathrm{mL}}{60 \mathrm{mg}} \times \frac{500 \mathrm{~mL}}{1000 \mathrm{mg}}$ |  |
| $30 \mathrm{~mL} / \mathrm{hr}$ | $=\mathrm{x}$ |

How many hours will the IV run?

## $\frac{\text { Number } \mathrm{mL}}{\text { Number } \mathrm{mL} / \mathrm{hr}}$

$\frac{500 \mathrm{~mL}}{30 \mathrm{~mL} / \mathrm{hr}}=16.6$ or approximately 17 hours

## Example Order: lidocaine $2 \mathrm{mg} / \mathrm{min}$ IV

Supply: infusion pump, standard solution of 2 g in 500 mL D5W ( 2000 mg in 500 mL )

The order calls for $2 \mathrm{mg} / \mathrm{min}$. We need $\mathrm{mL} / \mathrm{hr}$ for the pump.
Multiply $2 \mathrm{mg} / \mathrm{min} \times 60=120 \mathrm{mg} / \mathrm{hr}$


$\left|\begin{array}{|c}\begin{array}{c}\text { Proportion Expressed } \\
\text { as Two Ratios }\end{array} \\
500 \mathrm{~mL}: 2000 \mathrm{mg}:: \mathrm{x} \mathrm{mL}: 120 \mathrm{mg}\end{array}\right|$

| Proportion Expressed |
| :---: |
| as Two Fractions |

$\frac{6000}{2000}=\mathrm{x}$
$30 \mathrm{~mL} / \mathrm{hr}=\mathrm{xL}$

Set pump at $30 \mathrm{~mL} / \mathrm{hr}$.
$30 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$
How many hours will the IV run?
Number mL
Number mL/hr
$\frac{500 \mathrm{~mL}}{30 \mathrm{~mL} / \mathrm{hr}}=16.6$ or approximately 17 hours

## SELF TEST 2 Infusion Rates for Drugs Ordered in mg/min

Solve the following problems. Answers appear at the end of the chapter.

1. Order: lidocaine $1 \mathrm{mg} / \mathrm{min}$ IV

Supply: 2 g in 250 mL D5W, infusion pump
a. What is the drip rate?
b. How many hours will the IV run?
2. Order: Pronestyl (procainamide) $3 \mathrm{mg} / \mathrm{min}$ IV

Supply: Pronestyl (procainamide) 1 g in 250 D 5 W , infusion pump
a. What is the drip rate?
b. How many hours will the IV run?
3. Order: Bretylol (bretylium) $2 \mathrm{mg} / \mathrm{min}$ IV

Supply: Bretylol (bretylium) 1 g in 500 mL D5W, infusion pump
a. What is the drip rate?
b. How many hours will the IV run?
4. Order: $\quad$ Cordarone (amiodarone) $1 \mathrm{mg} / \mathrm{min}$ for 6 hr

Supply: Cordarone (amiodarone) 450 mg in 250 mL D5W, infusion pump What is the drip rate?
5. Order: Pronestyl (procainamide) $1 \mathrm{mg} / \mathrm{min}$ IV

Supply: Pronestyl (procainamide) 2 g in 500 mL D5W, infusion pump
a. What is the drip rate?
b. How many hours will the IV run?

## _ Medications Ordered in mcg/min, mcg/kg/min, or milliunits/min

Intensive care units administer powerful drugs in extremely small amounts called micrograms $(1 \mathrm{mg}=1000 \mathrm{mcg})$. The orders for these drugs often use the patient's weight as a determinant, because these drugs are so potent.

## Example Order: renal dose dopamine $2 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Order: titrate Levophed to maintain arterial mean pressure above 65 mm Hg and below 95 mm Hg

This section shows how to calculate doses in micrograms and in milliunits, and how to use kilograms in determining doses.

## mcg/min-Rule and Calculation

Drugs ordered in mcg/min are standardized solutions that may be pre-packaged by the drug manufacturer. They are administered using infusion pumps that deliver medication in $\mathrm{mL} / \mathrm{hr}$.

To calculate drugs ordered in $\mathrm{mcg} / \mathrm{min}$, first determine how much of the drug is in 1 mL of solution (see beginning of this chapter). If the drug is supplied in mg , convert it to mcg; then divide that amount by 60 to get $\mathrm{mcg} / \mathrm{min}$. The final number tells you how much of the drug is in 1 mL of fluid. You can then use one of the three methods to solve for the infusion rate, on the basis of the ordered dosage.

Solving $\mathrm{mcg} / \mathrm{min}$ requires four steps:

1. Reduce the numbers in the standard solution to $\mathrm{mg} / \mathrm{mL}$.
2. Change mg to mcg .
3. Divide by 60 to get $\mathrm{mcg} / \mathrm{min}$.
4. Use either the formula, the ratio, or the proportion method to solve for $\mathrm{mL} / \mathrm{hr}$.

## Example Order: Intropin (dopamine) $400 \mathrm{mcg} / \mathrm{min}$ IV

Supply: Infusion pump, standard solution 400 mg in 250 mL D5W


Step 1. Reduce the numbers in the standard solution.
$\frac{400 \mathrm{mg}}{250 \mathrm{~mL}}=1.6 \mathrm{mg}$ in 1 mL
Step 2. Change mg to mcg.
$1.6 \mathrm{mg} \times 1000=1600 \mathrm{mcg} / \mathrm{mL}$
Step 3. Divide by 60 to get $\mathrm{mcg} / \mathrm{min}$.
$\frac{1600 \mathrm{mcg}}{60 \mathrm{~min}}=26.67 \mathrm{mcg} / \mathrm{min}$ (round to hundredths)
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ (round to nearest whole number).

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\begin{aligned} & \frac{400 \mathrm{mcg} / \mathrm{min}}{26.67 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL} \\ = & 15 \mathrm{~mL} / \mathrm{hr} \end{aligned}$ | $1 \mathrm{~mL}: 26.67 \mathrm{mcg} / \mathrm{min}:: \mathrm{x} \mathrm{mL}: 400 \mathrm{mcg} / \mathrm{min}$ | $\frac{1 \mathrm{~mL}}{26.67 \mathrm{mcg} / \mathrm{min}} \times \frac{\mathrm{x} \mathrm{~mL}}{400 \mathrm{mcg} / \mathrm{min}}$ |
|  | $400=26.67 \mathrm{x}$ |  |
|  | $\frac{400}{26.67}=15 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$ |  |

Set the pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=15$
Example Order: Aramine (metaraminol) $60 \mathrm{mcg} / \mathrm{min}$ IV
Supply: infusion pump, standard solution 50 mg in 250 mL D5W


Step 1. Reduce the numbers in the standard solution.

$$
\frac{50 \mathrm{mg}}{250 \mathrm{~mL}}=0.2 \mathrm{mg} / \mathrm{mL}
$$

Step 2. Change mg to mcg.
$0.2 \mathrm{mg}=200 \mathrm{mcg} / 1 \mathrm{~mL}$
Step 3. Divide by 60 to get $\mathrm{mcg} / \mathrm{min}$.
$3.33 \mathrm{mcg} / \mathrm{min}$
(Round to hundredths.)
Step 4. Solve. Round to the nearest whole number.


Set the pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=18$

## mag/kg/min-Rule and Calculation

Example Order: Intropin (dopamine) $2 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$
Supply: infusion pump, standard solution 200 mg in 250 mL D5W; client weighs 80 kg


Note that this order is somewhat different. You are to give $2 \mathrm{mcg} / \mathrm{kg}$ body weight.
80 kg
$\frac{\times 2 \mathrm{mcg}}{160 \mathrm{mcg}}$ The order now is $160 \mathrm{mcg} / \mathrm{min}$.

1. Reduce the numbers in the standard solution.

$$
\frac{200 \mathrm{mg}}{250 \mathrm{~mL}}=0.8 \mathrm{mg} / \mathrm{mL}
$$

2. Change mg to mcg .
$0.8=800 \mathrm{mcg} / \mathrm{mL}$
3. Divide by 60 to get $\mathrm{mcg} / \mathrm{min}$.

$$
\frac{800}{60}=13.33
$$

(Round to hundredths.)
4. Solve. Round to the nearest whole number.


Set the pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=12 \mathrm{~mL} / \mathrm{hr}$

## Milliunits/min-Rule and Calculation

In obstetrics, a Pitocin (oxytocin) drip can initiate labour. The standard solution of Pitocin is prepared by adding 10 units of oxytocin to 1000 mL of $0.9 \%$ sodium chloride. The initial dose should be 0.5 to 1 milliunits $/ \mathrm{min}$. At 30 - to 60 -minute intervals, the dose can be gradually increased in increments of 1 to 2 milliunits/min until the desired contraction pattern has been established. Always follow hospital or institutional policy. Because 1 unit $=1000$ milliunits $(\mathrm{mU})$, you solve these problems in the same way as $\mathrm{mcg} / \mathrm{min}$.

Example Order: Pitocin (oxytocin) drip commence at $1 \mathrm{mU} / \mathrm{min}$ Supply: infusion pump, standard solution 10 units Pitocin in 1000 mL NS


1. Reduce the number in the standard solution.

$$
10 \text { units }=0.01 \text { units } / \mathrm{mL}
$$

1000 mL
2. Change units of Pitocin to milliunits.

1 unit $=1000$ milliunits
$0.01 \times 1000=10$ milliunits $/ \mathrm{mL}$
3. Divide by 60 to get milliunits $/ \mathrm{min}$.
$\underline{10}=0.167$ milliunits $/ \mathrm{min}$
60
4. Solve. Round to the nearest whole number.


Set pump at $6 \mathrm{~mL} / \mathrm{hr}$
( 1 milliunit $/ \mathrm{min}=6 \mathrm{~mL} / \mathrm{hr}$ )

Example Order: Increase Pitocin q30-60 min by 1-milliunit/min increments until labour is established.

1 milliunit $=6 \mathrm{~mL} / \mathrm{hr}$; therefore, increase the IV rate $6 \mathrm{~mL} / \mathrm{hr} \mathrm{q30min} \mathrm{until} \mathrm{labour} \mathrm{is} \mathrm{established}$.

## Infusion

Rates for Drugs Ordered in mcg/min, mcg/kg/min, milliunits/min

## Calculate the number of mL to infuse and the rate of infusion. Answers appear at the end of the chapter.

1. Order: Intropin (dopamine) double strength, $800 \mathrm{mcg} / \mathrm{min}$ IV Supply: standard solution 800 mg in 250 mL D5W, infusion pump
2. Order: Levophed (norepinephrine), $12 \mathrm{mcg} / \mathrm{min}$ IV Supply: standard solution of 4 mg in 250 mL D5W, infusion pump
3. Order: Dobutrex (dobutamine) $5 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ IV Supply: patient weight, 100 kg ; standard solution of 1 g in 250 mL D5W, infusion pump
4. Order: Dobutrex (dobutamine) $7 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ IV Supply: patient weight, 70 kg ; standard solution of 500 mg in 250 mL D5W, infusion pump
5. Order: nitroglycerin $10 \mathrm{mcg} / \mathrm{min}$ IV

Supply: standard solution of 50 mg in 250 mL D5W, infusion pump
6. Order: Pitocin drip (oxytocin) 0.5 milliunit/min IV Supply: infusion pump, standard solution 10 units in 1000 mL NS
7. Order: Isuprel (isoproterenol) titrated at $4 \mathrm{mcg} / \mathrm{min}$ IV

Supply: infusion pump, solution 2 mg in 250 mL D5W
8. Order: Brevibloc (esmolol) $50 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ IV

Supply: infusion pump, 2.5 g in 250 mL D5W; weight, 58 kg
9. Order: $\quad$ Nipride (nitroprusside) $2 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ IV

Supply: patient weight, 80 kg ; nipride 50 mg in 250 mL D5W, infusion pump
$\begin{array}{ll}\text { 10. Order: } & \text { Inocor (amrinone) } 200 \mathrm{mcg} / \mathrm{min} \\ \text { Supply: } & \text { Inocor (amrinone) } 0.1 \mathrm{~g} \text { in } 100 \mathrm{~mL} \text { NS, infusion pump }\end{array}$

## Body Surface Nomogram

Antineoplastic drugs used in cancer chemotherapy have a narrow therapeutic range. Calculation of these drugs is based on BSA in square metres-a method considered more precise than $\mathrm{mg} / \mathrm{kg} / \mathrm{body}$ weight. BSA is the measured or calculated area of the body.

There are several mathematical formulas to calculate body surface area. One often used is:
$\sqrt{\frac{\text { weight }(\mathrm{kg}) \times \text { height }(\mathrm{cm})}{3600}}=$ BSA
Average BSA:
"Normal" BSA: 1.7 m$^{2}$
Average BSA for men: $1.9 \mathrm{~m}^{2}$
Average BSA for women: $1.6 \mathrm{~m}^{2}$
You can estimate BSA by using a three-column chart called a nomogram (Fig. 9-2). Mark the patient's height in the first column and the patient's weight in the third column. Then draw a line between these two marks. The point at which the line intersects the middle column indicates estimated body surface in metres squared. You'll use a different BSA chart for children, because of differences in growth (see Chapter 10).


## FIGURE 9-2

Body surface area (BSA) is critical when calculating dosages for pediatric patients or for drugs that are extremely potent and need to be given in precise amounts. The nomogram shown here lets you plot the patient's height and weight to determine the BSA. Here's how it works:

1. Locate the patient's height in the left column of the nomogram and the weight in the right column.
2. Use a ruler to draw a straight line connecting the two points. The point where the line intersects the surface area column indicates the patient's BSA in square metres.

## FIGURE 9-3

Portion of doctor's order form for chemotherapy. The doctor or healthcare provider writes the patient's height and weight and calculates the BSA as $2.1 \mathrm{~m}^{2}$. The protocol dosage is the guide used to determine the patient's dose. For mitomycin, the protocol is $12 \mathrm{mg} / \mathrm{m}^{2} \times 2 \mathrm{~m}^{2}=24 \mathrm{mg}$. For 5 FU , the protocol dose is $1000 \mathrm{mg} / \mathrm{m}^{2} \times 2 \mathrm{~m}^{2}=2000 \mathrm{mg}$.


The oncologist, a physician who specializes in treating cancer, lists the patient's height, weight, and BSA; gives the protocol (drug requirement based on BSA in $\mathrm{m}^{2}$ ); and then gives the order.

Figure 9-3 shows a partial order sheet for chemotherapy. Both the pharmacist and the nurse validate the order before preparation.

To determine BSA in $\mathrm{m}^{2}$, you can use a special calculator, obtained from companies manufacturing antineoplastics. Many websites also calculate BSA; see, for example, www.manuelsweb.com/bsa.htm www.users.med.cornell.edu/~spon/picu/calc/bsacalc.htm

## $m^{2}$-Rule and Calculation

Oncology drugs are prepared by a pharmacist or specially trained technician who is gowned, gloved, and masked and works under a laminar flow hood; these precautions protect the pharmacist or technician and also ensure sterility. When the medication reaches the unit, the nurse bears two responsibilities: checking the doses for accuracy before administration and using an infusion pump for IV orders.

## Example

H, $183 \mathrm{~cm} ; \mathrm{W}, 79 \mathrm{~kg} ;$ BSA, $2.0 \mathrm{~m}^{2}$
Order: Platinol (cisplatin) $160 \mathrm{mg}\left(80 \mathrm{mg} / \mathrm{m}^{2}\right)$ IV in 1 L NS with 2 mg magnesium sulfate over 2 hr

1. Check the BSA using the nomogram in Figure 9-2. It is correct. Protocol calls for $80 \mathrm{mg} / \mathrm{m}^{2} ; 160 \mathrm{mg}$ is correct.
2. The IV is prepared by the pharmacy. Determine the rate of infusion.
$1 \mathrm{~L}=1000 \mathrm{~mL}$
$\frac{\text { Number } \mathrm{mL}}{\text { Number hr }}=\mathrm{mL} / \mathrm{hr} \quad \frac{\frac{500}{\frac{1000}{2}}}{\frac{1}{1}}=500 \mathrm{~mL} / \mathrm{hr}$
Set the pump: total number $\mathrm{mL}, 1000 ; \mathrm{mL} / \mathrm{hr}, 500$

## SELF TEST 4 Use of Nomogram

Solve the following problems. Answers appear at the end of this chapter. Use the nomogram in Figure 9-2 to double-check the BSA.

1. H, 183 cm ; W, 75 kg ; BSA, $1.96 \mathrm{~m}^{2}$

Order: Doxil (doxorubicin) $39 \mathrm{mg}\left(20 \mathrm{mg} / \mathrm{m}^{2}\right)$ in D5W 250 mL to infuse over $1 / 2 \mathrm{hr}$
a. Is dose correct?
b. How should the pump be set?
2. $\mathrm{H}, 165 \mathrm{~cm}$; W, $70 \mathrm{~kg} ; \mathrm{BSA}, 1.77 \mathrm{~m}^{2}$

Order: Lomustine (CCNU) 230 mg po ( $130 \mathrm{mg} / \mathrm{m}^{2}$ ) once q 6 wk
a. Is dose correct?
b. Lomustine (CCNU) comes in tabs of 100 mg and 10 mg . What is the dose?
3. H, 187 cm ; W, 77 kg ; BSA, $2.0 \mathrm{~m}^{2}$

Order: Cerubidine (daunorubicin) $80 \mathrm{mg}\left(40 \mathrm{mg} / \mathrm{m}^{2}\right)$ in D5W over 1 hr IV Supply: IV bag labelled 80 mg in 80 mL D5W; infuse in rapidly flowing IV
a. Is dose correct?
b. How should the pump be set? (See IVPB administration in Chapter 8.)
4. $\mathrm{H}, 170 \mathrm{~cm}$; W, 85 kg ; BSA, $2.0 \mathrm{~m}^{2}$

Order: $\quad$ Vepesid (etoposide) 400 mg po every day $\times 3\left(200 \mathrm{mg} / \mathrm{m}^{2}\right)$
Supply: capsules of 50 mg
a. Is dose correct?
b. How many capsules should be poured?
5. H, 160 cm ; W, 54 kg ; BSA, $1.6 \mathrm{~m}^{2}$

Order: Taxol (paclitaxel) $216 \mathrm{mg}\left(135 \mathrm{mg} / \mathrm{m}^{2}\right)$ in D5W $1 / 2 \mathrm{~L}$ glass bottle over 3 hr
a. Is dose correct?
b. How should the pump be set?

## —— Patient-Controlled Analgesia (PCA)

PCA, an IV method of pain control, allows a patient to self-administer a preset dose of pain medication. The physician or healthcare provider prescribes the narcotic dose and concentration, the basal rate, the lockout time, and the total maximum hourly dose (Fig. 9-4).

Basal rate is the amount of medication that is infused continuously each hour. PCA dose is the amount of medication infused when the patient activates the button control. Lockout time or delay-a feature that prevents overdosage-is the interval during which the patient cannot initiate another dose after giving a self-dose. Total hourly dose is the maximum amount of medication the patient can receive in an hour. The physician or healthcare provider writes all this information on an order form.

Figure 9-5 shows a narcotic PCA medication record. Morphine concentration is $1 \mathrm{mg} / \mathrm{mL}$. The pharmacy dispenses a $100-\mathrm{mL}$ NS bag with 100 mL morphine. The patient continuously receives 0.5 mg by infusion pump and can give 1 mg by pressing the PCA button. Eight minutes must elapse before another PCA dose can be delivered. Note that at 1200h, the nurse charted that the patient made three attempts but received only two injections. This indicates that 8 minutes had not elapsed before one of the attempts.

The nurse's responsibility is to assess the patient every hour, noting how the patient scores his or her pain, the number of PCA attempts, and the total hourly dose received, as well as the cumulative dose, the patient's level of consciousness, side effects, and respirations.

## FIGURE 9-4

Patient-controlled analgesia allows the client to self-administer medication, as necessary, to control pain. (From Roach, S. S. [2004]. Introductory clinical pharmacology [7th ed.]. Philadelphia: Lippincott Williams \& Wilkins, p. 173.)


| AVERY MEDICAL CENTRE <br> Narcotic PCA <br> Medication Administration Record |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Check appropriate order $\qquad$ Morphine $1 \mathrm{mg} / 1 \mathrm{~mL}$ $\qquad$ Fentanyl. Concentra $\qquad$ Demerol $10 \mathrm{mg} / 1 \mathrm{~m}$ $\qquad$ Other: $\qquad$ | 50 mL ion: $\qquad$ :50 mL oncent | olume | e: |  |  |  |
| Infusion started by: $\qquad$ <br> (zero out prior shift volume with each new bag/syringe) <br> Settings confirmed by: $\qquad$ RN <br> Date/Time discoutinued: $\qquad$ <br> Discontinued by: $\qquad$ RN <br> Total Amount Administered: $\qquad$ <br> Waste returned to pharmacy: $\qquad$ |  |  |  |  |  |  |
| Date | 0600 | 0800 | 1000 | 1200 | 1400 | 1600 |
| Number of attempts | 3 | 2 | 2 | 3 |  |  |
| Number of injections | 3 | 2 | 2 | 2 |  |  |
| Basal dose | 0.5 | 0.5 | 0.5 | 0.5 |  |  |
| Total mL | 3.5 | 4.5 | 4.5 | 2.5 |  |  |
| Cumulative mL | 3.5 | 8 | 12.5 | 15 |  |  |
| Pain score | 5 | 5 | 5 | 6 |  |  |
| Level of consciousness | 1 | 1 | 1 | 1 |  |  |
| Respiratory rate (per minute) | 16 | 20 | 16 | 22 |  |  |
| Nurse's initials | GP | GP | GP | GP |  |  |
| Nurse's signature $\qquad$ Initial $\qquad$ <br> Nurse's signature $\qquad$ Initial $\qquad$ <br> Nurse's signature $\qquad$ Initial $\qquad$ <br> Nurse's signature $\qquad$ Initial $\qquad$ |  |  |  |  |  |  |

## Heparin and Insulin Protocols

Many hospitals and other institutions now use protocols to give the nurse more autonomy in determining the rate and amount of drug the patient is receiving. These protocols are based on a parameter, usually a lab test ordered by healthcare provider. After receiving the lab test results, the nurse uses the protocol to determine the change (if any) in the dosage amount and when subsequent lab testing is to be done.

Two drugs used in protocols are heparin and insulin.

## Heparin Protocol

Heparin, an anticoagulant, is titrated according to the results of the lab test, aPTT (activated partial thromboplastin time). Weight-based heparin protocol calculates the dose of heparin based on the patient's weight.

Sample heparin protocol:
Heparin drip: 25,000 units in 500 mL D5W
Bolus: 80 units/kg
Starting Dose: 18 units $/ \mathrm{kg} / \mathrm{hr}$
Titrate according to the following chart:

| aPTI <br> (seconds) | $\begin{aligned} & <45 \\ & \text { seconds } \end{aligned}$ | 45-48 seconds | $\begin{aligned} & \text { 49-66 } \\ & \text { seconds } \end{aligned}$ | 67-70 seconds | 71-109 seconds | $\begin{aligned} & 110-130 \\ & \text { seconds } \end{aligned}$ | $\begin{aligned} & >130 \\ & \text { seconds } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bolus | Bolus with 40 units/kg | Bolus with 40 units/kg | No bolus |
| Rate adjustment | Increase rate by 3 units/kg/hr | Increase rate by 2 units/kg/hr | Increase <br> rate by <br> 1 unit/kg/hr | No change | No change | Decrease rate by 1 unit/kg/hr | Stop infusion for 1 hour. <br> Decrease rate by 2 units/kg/hr |
| Next lab | aPTT in 6 hours | aPTT in 6 hours | aPTT in 6 hours | aPTT next AM | aPTT next am | aPTT in 6 hours | aPTT in 6 hours |

Example Example: patient weight is 70 kg .

1. Calculation for bolus dose: 80 units/kg.

Multiply 80 units $\times 70 \mathrm{~kg}=5600$ units $/ \mathrm{kg}$
2. Infusion rate.

First calculate what the dose will be
Starting dose is 18 units $/ \mathrm{kg} / \mathrm{hr}$
Multiply $18 \times 70 \mathrm{~kg}=1260$ units $/ \mathrm{kg}$
Now use the calculation similar to that on p. 238

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{1260 \text { units }}{25,000 \text { units }} \times 500 \mathrm{~mL}=25.2 \mathrm{~mL} / \mathrm{hr}$ | $500 \mathrm{~mL}: 25000$ units: : x mL: 1260 units | $\frac{500 \mathrm{~mL}}{25000 \mathrm{units}} \times \frac{\mathrm{x} \mathrm{~mL}}{1260 \mathrm{units}}$ |
|  | $\begin{aligned} & \frac{500 \times 1260}{25000}=x \\ & 25.2 \mathrm{~mL} / \mathrm{hr}=x \end{aligned}$ |  |

Set the pump at $25 \mathrm{~mL} / \mathrm{hr}$.
3. The aPTT result 6 hours after the infusion started is 50 . According to the table, increase the drip by $1 \mathrm{u} / \mathrm{kg} / \mathrm{hr}$.
First, calculate the dose
1 unit $\times 70 \mathrm{~kg}=70$ units/kg
Then set up the same formula:

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{70 \text { units }}{25,000 \text { units }} \times 500 \mathrm{~mL}=1.4 \mathrm{~mL}$ | $500 \stackrel{\text { mL: } 25000 \text { units : : } \mathrm{x} \text { mL }: 70 \text { units }}{ }$ | $\frac{500 \mathrm{~mL}}{25000 \text { units }} \times \frac{\mathrm{x} \mathrm{~mL}}{70 \text { units }}$ |
|  | $500 \times 70=25000 \mathrm{x}$ |  |
|  | $\frac{35000}{25000}=x$ |  |
|  | $1.4 \mathrm{~mL}=\mathrm{x}$ |  |

4. Increase the infusion rate by 1.4 mL .
$25.2+1.4=26.6 \mathrm{~mL} / \mathrm{hr}$. Set the pumps at $27 \mathrm{~mL} / \mathrm{hr}$
Recheck the aPTT in 6 hours and titrate according to the result

Use the chart on page 248 to solve the following problems. Use heparin 25,000 units in 500 mL as your IV solution. The patient's weight is 70 kg . Beginning infusion rate for each problem is $25.2 \mathrm{~mL} / \mathrm{hr}$. Answers appear at the end of the chapter.

1. The patient's aPTT is 45 seconds.
a. Is there a bolus dose? If so, what is the dose?
b. Is there a change in the infusion rate? Calculate the new infusion rate.
2. The patient's aPTT is 40 seconds.
a. Is there a bolus dose? If so, what is the dose?
b. Is there a change in the infusion rate? Calculate the new infusion rate.
3. The patient's aPTT is 110 seconds.
a. Is there a bolus dose? If so, what is the dose?
b. Is there a change in the infusion rate? Calculate the new infusion rate.
4. The patient's aPTT is 140 seconds.
a. Is there a bolus dose? If so, what is the dose?
b. Is there a change in the infusion rate? Calculate the new infusion rate.

## Insulin Infusion Protocol

Intended only for use in intensive care settings, insulin infusions are initiated on adult patients with hyperglycemia. The rate of the infusion is titrated according to blood glucose measured hourly using a glucometer. Considerations made prior to the initiation of the infusion include absence of any neurologic injury and enteral or parenteral nutrition. Additionally, insulin infusion is not used in patients experiencing diabetic emergencies, such as diabetic ketoacidosis (DKA) or hyperglycemic hyperosmolar states. Insulin infusion protocols always contain actions to be taken if hypoglycemia occurs. For example, some protocols indicate that physician must be notified and 1 ampoule of D50W given IVP if blood glucose is less than $4.0 \mathrm{mmol} / \mathrm{L}$. Always follow hospital or institutional policy. This section provides a partial example of an insulin infusion protocol.

## Critical Care Insulin Infusion Protocal

## GOAL: Maintain serum glucose between 4.5-8.0 mmol/L

## 1. Initiating an insulin infusion

Prepare an infusion of Humulin R insulin 50 units in 100 mL of $0.9 \%$ sodium chloride (concentration 0.5 units/mL). $N B$ - all doses are of Humulin $R$.

| Glucose Leve | $\begin{aligned} & 4.5-8.0 \\ & \mathrm{mmol} / \mathrm{L} \end{aligned}$ | 8.1-11.0 mmol/L | $\begin{aligned} & 11.1-14.0 \\ & \mathrm{mmol} / \mathrm{L} \end{aligned}$ | $\begin{aligned} & \text { 14.1-17.0 } \\ & \mathrm{mmol} / \mathrm{L} \end{aligned}$ | $\begin{aligned} & \text { 17.1-20.0 } \\ & \mathrm{mmol} / \mathrm{L} \end{aligned}$ | $\begin{aligned} & 20 \\ & >\mathrm{mmol} / \mathrm{L} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Action | Monitor only | Start infusion 2 units/hr | 2 units IVP <br> Start infusion 2 units/hr | 4 units IVP <br> Start infusion <br> 2 units/hr | 8 units IVP <br> Start infusion <br> 2 units/hr | Call MD |

## 2. Ongoing Infusion Titration

Check glucose q1h.

| Glucose Level | Infusion rate 1-5 units/hr | Infusion rate 6-10 units/hr | Infusion rate 11-16 units/hr | Infusion rate $>16$ units/hr |
| :---: | :---: | :---: | :---: | :---: |
| 4.0-4.4 mmol/L | Discontinue infusion Recheck glucose in q30min x2 <br> When glucose $>6$ restart infusion. <br> Reduce rate by 1 unit/hr | Discontinue infusion <br> Recheck glucose in q30min x3 <br> When glucose $>6$ restart infusion. <br> Reduce rate by 2 units/hr | Discontinue infusion Recheck glucose in q30min x4 <br> When glucose $>6$ restart infusion. Reduce rate by 3 unit/hr |  |
| $4.5-8.0 \mathrm{mmol} / \mathrm{L}$ (Desired range) <br> $8.1-11.4 \mathrm{mmol} / \mathrm{L}$ | Increase infusion 1unit/hr | Monitor and maintain glucose in <br> Increase infusion <br> 2 units/hr | desired range <br> Increase infusion <br> 3 units/hr | Call MD for |
| $11.5-14.0 \mathrm{mmol} / \mathrm{L}$ | 2 units IVP <br> Increase infusion <br> 1 unit/hr | 2 units IVP <br> Increase infusion 2 units/hr | 2 units IVP <br> Increase infusion 3 units/hr | new order |
| $14.1-17.0 \mathrm{mmol} / \mathrm{L}$ | 4 units IVP <br> Increase infusion 1 unit/hr | 4 units IVP Increase infusion 2 units/hr | 4 units IVP <br> Increase infusion 3 units/hr |  |
| 17.1-20.0 mmol/L | 8 units IVP <br> Increase infusion <br> 1 unit/hr | 8 units IVP <br> Increase infusion <br> 2 units/hr | 8 units IVP <br> Increase infusion <br> 3 units/hr |  |
| > $20.1 \mathrm{mmol} / \mathrm{L}$ |  | Call MD For New Order |  |  |

Example 1800 h -Blood glucose is $12.2 \mathrm{mmol} / \mathrm{L}$.

1. Initiation-give 2 units of Humulin R IVP.
2. Calculate the infusion rate to administer 2 units/hr.

Formula Method
$\underline{2 \text { units } / \mathrm{hr}} \times 1 \mathrm{~mL}$ 0.5 units

## Proportion Expressed as Two Ratios

1 mL : 0.5 units :: x: 2 units/hr

## Proportion Expressed as Two Fractions

$1 \mathrm{~mL} \times \mathrm{x} \mathrm{mL}$ 0.5 units 2 units/hr
$1 \mathrm{~mL} \times 2$ units $/ \mathrm{hr}=0.5$ units $1 \mathrm{~mL} \times 2$ units $/ \mathrm{hr}$
$\frac{1 \mathrm{~mL} \times 2 \text { units }}{0.5}=1 \mathrm{~mL} \times 2$ units 0.5 units/hr

$$
4 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}
$$

3. Initiation—refer to "Initiating an Insulin Infusion Protocol"

Locate blood glucose at top of table. Follow instructions.
Set pump at $4 \mathrm{~mL} / \mathrm{hr}$. Recheck blood glucose in 1 hour. 1900 h -Blood glucose is $8.4 \mathrm{mmol} / \mathrm{L}$
4. Titrate IV infusion-refer to "Ongoing Infusion Titration"

Find current infusion rate at top of table. Locate current glucose level on left of table. Follow instructions.
Increase infusion 1 unit/hr. ( 2 units/hr +1 unit/hr $=3$ units/hr) Calculate the new infusion rate.

## Formula Method

3 units/hr $\times 1 \mathrm{~mL}$ 0.5 units

## Proportion Expressed <br> as Two Ratios

1 mL: 0.5 units :: x: 3 units/hr

Proportion Expressed
as Two Fractions
$\frac{1 \mathrm{~mL}}{0.5 \text { units }}=\frac{\mathrm{x} \mathrm{mL}}{3 \text { units } / \mathrm{hr}}$
$1 \mathrm{~mL} \times 3$ units $/ \mathrm{hr}=0.5$ units $1 \mathrm{~mL} \times 2$ units $/ \mathrm{hr}$

$$
\frac{1 \mathrm{~mL} \times 3 \text { units }}{0.5 \text { units/hr }}=1 \mathrm{~mL} \mathrm{x} 2 \text { units }
$$

$$
6 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}
$$

Set IV pump at $6 \mathrm{~mL} / \mathrm{hr}$. Recheck blood glucose in 1 hour.
2000 h -Blood glucose is $4.7 \mathrm{mmol} / \mathrm{L}$
5. No change to infusion rate ( $6 \mathrm{~mL} / \mathrm{hr}$ ). Recheck blood glucose in 1 hour.

SELF TEST 6
Using Insulin Infusion Protocol above, complete the following calculations for your patient.

1. The insulin infusion is at 11 units/hr. Your patient's blood glucose is $11.4 \mathrm{mmol} / \mathrm{L}$.
a. Indicate action to be taken as per protocol.
b. Calculate new infusion rate.
2. The insulin infusion is at 14 units/hr. Your patient's blood glucose is $4.3 \mathrm{mmol} / \mathrm{L}$.

Indicate action to be taken as per protocol.
3. Insulin infusion has been stopped for 60 minutes. Your patient's blood glucose is $6.3 \mathrm{mmol} / \mathrm{L}$. The insulin infusion was at 14 units/hr.
a. Indicate action to be taken as per protocol.
b. Calculate new infusion rate.

## SELF TEST 7 Infusion Problems

Solve these problems. Answers are given at the end of the chapter.

1. Order: start Normadyne (labetalol) $0.5 \mathrm{mg} / \mathrm{min}$ on pump

Supply: infusion pump, standard solution of 200 mg in 200 mL D5W
What is the pump setting?
2. Order: aminophylline 250 mg in 250 mL D 5 W at $75 \mathrm{mg} / \mathrm{hr}$ IV Supply: infusion pump, vial of aminophylline labelled $250 \mathrm{mg} / 10 \mathrm{~mL}$
a. How much drug is needed?
b. What is the pump setting?
3. Order: $\quad$ Bretylol (bretylium) 2 g in 500 mL D5W at $4 \mathrm{mg} / \mathrm{min}$ IV

Supply: infusion pump, standard solution of 2 g in 500 mL D5W
What is the pump setting?
4. Order: Zovirax (acyclovir) 400 mg in 100 mL D5W over 2 hr

Supply: infusion pump, 500-mg vials of Zovirax (acyclovir) with 10 mL diluent; makes $50 \mathrm{mg} / \mathrm{mL}$
a. How much drug is needed?
b. What is the pump setting?
5. Order: Abbokinase (urokinase) 5,000 units/hr over 5 hr IV

Supply: infusion pump, vials of 5,000 units
Directions: Dissolve Abbokinase (urokinase) in 1 mL sterile water. Add to 250 mL D5W.
a. How much drug is needed?
b. What is the pump setting?
6. Order: magnesium sulfate 4 g in 100 mL D5W to infuse over 30 min IV Supply: infusion pump, $50 \%$ solution of magnesium sulfate
a. How much drug is needed?
b. What is the pump setting?
7. Order: nitroglycerin $80 \mathrm{mcg} / \mathrm{min}$ IV

Supply: infusion pump, standard solution of 50 mg in 250 mL D5W
What is the pump setting?
8. Order: Dobutrex (dobutamine) $6 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ IV

Supply: infusion pump, solution $500 \mathrm{mg} / 250 \mathrm{~mL}$ D5W; weight, 82 kg What is the pump setting?
9. Order: Pitocin (oxytocin) 2 milliunits/min IV Supply: infusion pump, solution of 9 units in 150 mL NS
a. What is the pump setting?
10. H, 152.4 cm ; W, 50 kg ; BSA, $1.45 \mathrm{~m}^{2}$

Order: $\quad$ Platinol (cisplatin) $116 \mathrm{mg}\left(80 \mathrm{mg} / \mathrm{m}^{2}\right)$ in 1 L NS to infuse over 4 hr
a. Is dose correct?
b. How should the pump be set?

## RITICAL THINKING: TEST YOUR CLINICAL SAVVY

A 65-year-old patient with a 10 -year history of congestive heart failure and type 1 diabetes is admitted to the ICU with chest pain of more than 24 hours. The patient is receiving heparin, insulin, calcium gluconate, and potassium chloride, all intravenously.
a. Why would an infusion pump be needed with these medications?
b. Why would medications that are based on body weight require the use of a pump? Why would medications based on BSA require an infusion pump?
c. Can any of these medications be regulated with standard roller clamp tubing? What would be the advantage? What would be the contraindication?
d. What other information would you need to calculate the drip rates of these medications?
e. Why would it be necessary to calculate how long each infusion will last?

## Putting It Together

Mrs. R is a 79 -year-old female with dyspnea without chest pain, fever, chills, or sweats. No evidence for bleeding. Admitted through the ER with BP 82/60, afebrile, sinus tachycardia at $110 / \mathrm{min}$. She underwent emergency dialysis and developed worsening dyspnea and was transferred to the ICU. BP on admission to ICU was 70/30, tachypneic on 100\% nonrebreather mask. No c/o chest discomfort or abdominal pain. Dyspnea worsened and patient became bradycardic and agonal respirations developed. A Code Blue was called and the patient was resuscitated after intubation. Spontaneous pulse and atrial fibrillation were noted.

Past Medical History: cardiomegaly, severe cardiomyopathy, chronic atrial fibrillation, unstable angina, hypertension, chronic kidney disease with hemodialysis, TIA in 3/07.

Allergies: calcium channel blockers
Currrent Vital Signs: pulse $150 / \mathrm{min}$, blood pressure is $90 / 40$, RR 18 via the ventilator. Afebrile. Weight: 90 kg

## Medication Orders

Zosyn (piperacillin/tazobactam) antibiotic 0.75 G IV in 50 mL q8h
Protonix (pantoprazole) antiulcer 40 mg IV q12h. dilute in 10 mL NS and give slow IV push
Neo-Synephrine (phenylephrine) vasopressor drip 30 mg in 500 mL D5W
$100 \mathrm{mcg} / \mathrm{min}$ titrate for SBP > 90
Levophed (norepinephrine) vasopressor in 4 mg in 500 mL D5W
Titrate SBP > 90 start at $0.5 \mathrm{mcg} / \mathrm{min}$
$1 / 2$ NS 1000 mL at $150 \mathrm{~mL} / \mathrm{hr}$
Heparin (anticoagulant) 12 units $/ \mathrm{kg} / \mathrm{hr}$. no loading dose. IV solution 25,000 units in 500 mL D5W
Titrate to keep aPTT 49-70
Aspirin (antiplatelet) 81 mg po/N/G daily
Lanoxin (digoxin) cardiac glycoside 0.25 mg IV daily
Diprivan (propofol) sedative $10 \mathrm{mg} / \mathrm{mL}$
Titrate $5-50 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ for sedation

## Putting It Together

## -

## Calculations

1. Calculate how many $\mathrm{mcg} / \mathrm{mL}$ of Neo-Synephrine.
2. Calculate the rate on the infusion pump of Neo-Synephrine $100 \mathrm{mcg} / \mathrm{min}$.
3. Calculate how many $\mathrm{mcg} / \mathrm{mL}$ of Levophed.
4. Calculate the rate on the infusion pump of Levophed $0.5 \mathrm{mcg} / \mathrm{min}$.
5. Calculate the dose of heparin.
6. Calculate the rate on the infusion pump of the heparin dose. When is the next aPTT due?
7. Diprivan is mixed in 100 mL . How many mg are mixed to equal $10 \mathrm{mg} / \mathrm{mL}$ ?
8. Calculate the rate on the infusion pump of Diprivan, using the range $5-50 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$.

## Critical Thinking Questions

1. Do any of the patient's medical conditions warrant changes in the medication orders?
2. Why would two vasopressors be given together?
3. What is the reason for giving the patient Diprivan?
4. What medication may help atrial fibrillation yet be contraindicated in this patient?
5. What is a possible reason for the sinus tachycardia of $150 / \mathrm{min}$ ?
6. What is the reason for giving a drug slow IV push, such as the Protonix? Answers in Appendix B.

## PROFICIENCY TEST 1 Special IV Calculations

Name: $\qquad$
Solve these problems. Answers are given in Appendix A.

1. Order: regular insulin 15 units/hr IV

Supply: infusion pump, standard solution 125 units in 250 mL NS
What is the pump setting?
2. Order: heparin sodium 1500 units/hr IV

Supply: infusion pump, standard solution 25,000 units in 500 mL D5W IV
What is the pump setting?
3. Order: $\quad$ Bretylol (bretylium) 2 g in 500 mL D5W at $2 \mathrm{mg} / \mathrm{min}$ IV

Supply: infusion pump, standard solution of 2 g in 500 mL D5W
What is the pump setting?
4. Order: Cardizem (diltiazem) 125 mg in 100 mL D5W at $5 \mathrm{mg} / \mathrm{hr}$ IV

Supply: infusion pump, vial of Cardizem (diltiazem) labelled $5 \mathrm{mg} / \mathrm{mL}$
a. What is the pump setting?
b. How much drug is needed?
5. Order: lidocaine $4 \mathrm{mg} / \mathrm{min}$ IV

Supply: infusion pump, standard solution of 2 g in 500 mL D5W
What is the pump setting?
6. Order: $\quad \mathrm{KCl} 40 \mathrm{mEq} / \mathrm{L}$ at $10 \mathrm{mEq} / \mathrm{hr}$ IV

Supply: infusion pump, vial of KCl labelled $20 \mathrm{mEq} / 10 \mathrm{~mL}$ in D5W 1000 mL
a. How much KCl should be added?
b. What is the pump setting?
7. Order: $\quad$ Pronestyl (procainamide) $1 \mathrm{mg} / \mathrm{min}$ IV

Supply: infusion pump, standard solution of 2 g in 500 mL D5W What is the pump setting?
8. Order: Fungizone (amphotericin) B 50 mg in 500 mL D5W over 6 hr IV

Supply: infusion pump, vial of 50 mg
a. How should the drug be added to the IV?
b. What is the pump setting?
9. Order: Pitressin (vasopressin) 18 units/hr IV, solution 200 units in 500 mL D5W

Supply: infusion pump, vial of Pitressin (vasopressin) labelled 20 units $/ \mathrm{mL}$
a. How much drug is needed?
b. What is the pump setting?
10. Order: Dobutrex (dobutamine) $250 \mathrm{mcg} / \mathrm{min}$ IV

Supply: infusion pump, solution of 500 mg in 500 mL D5W
What is the pump setting?
11. Order: renal dose Intropin (dopamine) $2.5 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Supply: infusion pump, solution 400 mg in 250 mL D5W; W, 60 kg
What is the pump setting?

## PROFICIENCY TEST 1 Special IV Calculations (Continued)

12. Order: Pitocin (oxytocin) 2 milliunits/min IV

Supply: infusion pump, solution of 5 units in 500 mL NS
What is the pump setting?
13. $\mathrm{H}, 160 \mathrm{~cm}$; W, 65 kg ; BSA, $1.7 \mathrm{~m}^{2}$

Order: $\quad$ Ara-C $170 \mathrm{mg}\left(100 \mathrm{mg} / \mathrm{m}^{2}\right)$ in 1 L D5W over 24 hr
a. Is dose correct?
b. How should the pump be set?
14. Order: $\quad$ Nipride (nitroprusside) $5 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ IV

Supply: patient wgt $=90 \mathrm{~kg}$; Nipride (nitroprusside) 50 mg in 250 mL D5W, infusion pump
What is the pump setting?
15. Order: epinephrine $2 \mathrm{mcg} / \mathrm{min}$

Supply: epinephrine 4 mg in 250 mL D5W, infusion pump
What is the pump setting?
16. Patient's aPTT is 45 seconds. Use the heparin protocol chart on page 248. Patient's weight is 90 kg . Heparin 25,000 units in 500 mL . Rate is currently $32 \mathrm{~mL} / \mathrm{hr}$.
a. Is there a bolus dose? If so, what is the dose?
b. Is there a change in the infusion rate? Calculate the new infusion rate.
17. Patient's aPTT is 40 seconds. Use the heparin protocol chart on page 248. Patient's weight is 90 kg . Heparin 25,000 units in 500 mL . Rate is currently $32 \mathrm{~mL} / \mathrm{hr}$.
a. Is there a bolus dose? If so, what is the dose?
b. Is there a change in the infusion rate? Calculate the new infusion rate.
18. Patient's aPTT is 110 seconds. Use the heparin protocol chart on page 248 . Patient's weight is 90 kg . Heparin 25,000 units in 500 mL . Rate is currently $32 \mathrm{~mL} / \mathrm{hr}$.
a. Is there a bolus dose? If so, what is the dose?
b. Is there a change in the infusion rate? Calculate the new infusion rate.
19. Use regular insulin 50 units in 100 mL NS. Use the insulin protocol on p .251 for changes. Patient's blood glucose is $6.8 \mathrm{mmol} / \mathrm{L}$. Repeat blood glucose in 1 hour is $7.1 \mathrm{mmol} / \mathrm{L}$.
a. What is the infusion rate?
b. Is there a change in the rate? If so, what is the new rate?

## Answers to Self Tests

## Self Test 1 Infusion Rates

$\quad$ Formula Mothod

1. $\frac{880 \mathrm{units} / \mathrm{hr}}{\frac{85}{25,000} \mathrm{units}} \times \stackrel{1}{100} \times 250 \mathrm{~mL}$
$=8 \mathrm{~mL} / \mathrm{hr}$ on a pump

## Proportion Expressed as Two Ratios

$250 \mathrm{~mL}: 25000$ units : : x mL : 800 units

## Proportion Expressed as Two Fractions

$\frac{\mathrm{x} \mathrm{mL}}{800 \text { units }} \times \frac{250 \mathrm{~mL}}{25000 \text { units }}$

$$
\begin{aligned}
200000 & =25000 x \\
\frac{200000}{25000} & =x \\
8 \mathrm{~mL} / \mathrm{hr} & =x
\end{aligned}
$$

$\frac{\text { number } \mathrm{mL}}{\text { number } \mathrm{mL} / \mathrm{hr}}$
$\frac{250 \mathrm{~mL}}{8 \mathrm{~mL} / \mathrm{hr}} \stackrel{31.2}{250.0}$
$\underline{24}$
10
$\frac{8}{2.0}$ approximately 31 hours; hospital policy states that IV bags be changed after 24 hours
2. Add 500 mg acyclovir to 100 mL D5W using a reconstitution device (see Chapter 8).

$$
\begin{aligned}
& \frac{\text { number } \mathrm{mL}}{\text { number } \mathrm{hr}}=\mathrm{mL} / \mathrm{hr} \\
& \frac{100 \mathrm{~mL}}{1 \mathrm{hr}} \quad \text { No math is necessary. Set the pump at } 100 \mathrm{~mL} / \mathrm{hr} \text {. }
\end{aligned}
$$

3. a. Add amicar to IV.
Formula Method
$\frac{24 \mathrm{~g}}{5 \mathrm{~g}} \times 2 Q \mathrm{~mL}=96 \mathrm{~mL}$\(\left|\begin{array}{c}Proportion Expressed <br>

as Two Ratios\end{array}\right|\)| Proportion Expressed |
| :---: |
| as Two Fractions |

(Note: Adding 96 mL to 1000 mL D5W $=1096 \mathrm{~mL}$. This is too much fluid.)
Use five vials. Empty four completely.
Take 16 mL from the last vial.
$20 \mathrm{~mL} \times 4$ vials $=80 \mathrm{~mL}+16 \mathrm{~mL}=96 \mathrm{~mL}$
Remove 96 mL D5W from the IV bag before adding the amicar. This results in 1000 mL .
b. $\frac{\text { number } \mathrm{mL}}{\text { number } \mathrm{hr}}=\mathrm{mL} / \mathrm{hr}$

$\frac{1000 \mathrm{~mL}}{24 \mathrm{hr}} \quad$| 1000.0 |
| :---: |

$\underline{96}$
40
24
16.0
14.4

Set pump at $42 \mathrm{~mL} / \mathrm{hr}$.
4. a. Add diltiazem to IV.

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{25}{\frac{125 \mathrm{mg}}{5 \mathrm{mg}}} \times 1 \mathrm{~mL}=25 \mathrm{~mL}$ | $1 \overleftrightarrow{\mathrm{~mL}: 5 \mathrm{mg}:: \mathrm{x} \mathrm{~mL}: 125} \mathrm{mg}$ | $\frac{\mathrm{x} \mathrm{~mL}}{125 \mathrm{mg}} \times \frac{1 \mathrm{~mL}}{5 \mathrm{mg}}$ |
|  | $\frac{125}{5}=x$ |  |
|  | $25 \mathrm{~mL}=\mathrm{x}$ |  |

(Note: Adding 25 mL to 100 mL D5W $=125 \mathrm{~mL}$. This is too much fluid. Remove 25 mL D5W from the IV bag before adding the diltiazem. This results in 100 mL .)
b. Add 25 mL to IV bag.

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{\stackrel{2}{10 \mathrm{mg}}}{125 \mathrm{mg}} \times \stackrel{4}{100} \mathrm{~mL}=8 \mathrm{~mL} / \mathrm{hr}$ | $100 \mathrm{~mL}: 125 \mathrm{mg}:: \mathrm{x} \mathrm{~mL}: 10 \mathrm{mg}$ | $\frac{\mathrm{x} \mathrm{~mL}}{10 \mathrm{mg}} \times \frac{100 \mathrm{~mL}}{125 \mathrm{mg}}$ |
| 1 | $\frac{1000}{125}=x$ |  |
|  | $8 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$ |  |

5. a. Add furosemide to IV.

Formula Method
$\frac{10}{\frac{100 \mathrm{mg}}{10 \mathrm{mg}}} \times 1 \mathrm{~mL}=10 \mathrm{~mL}$

Proportion Expressed as Two Ratios
$1 \mathrm{~mL}: 10 \mathrm{mg}: \mathrm{x} \mathrm{mL}: 100 \mathrm{mg}$

Proportion Expressed as Two Fractions
$\frac{\mathrm{x} \mathrm{mL}}{100 \mathrm{mg}} \times \frac{1 \mathrm{~mL}}{10 \mathrm{mg}}$

$$
\begin{aligned}
100 & =10 x \\
10 \mathrm{~mL} & =x
\end{aligned}
$$

(Note: Adding 10 mL to 100 mL D5W $=110 \mathrm{~mL}$. This is too much fluid. Remove 10 mL D5W from the IV bag before adding the furosemide. This results in 100 mL .)

Add 10 mL to the IV bag.
b. Because the solution is $100 \mathrm{mg} / 100 \mathrm{~mL}(1: 1)$ and the order reads $4 \mathrm{mg} / \mathrm{hr}$, the pump should be set at $4 \mathrm{~mL} / \mathrm{hr}$.
Formula Method
$\frac{1}{\substack{\mathrm{mg} / \mathrm{hr} \\ 1}} \times \stackrel{1}{\mathrm{mg}} \times \mathrm{I} \theta \mathrm{mL}=4 \mathrm{~mL} / \mathrm{hr}$
6. a.

| Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: |
| $100 \stackrel{\mathrm{~mL}: 100 \mathrm{mg}:: \mathrm{x} \mathrm{~mL}: 4 \mathrm{mg}}{ }$ | $\frac{\mathrm{x} \mathrm{~mL}}{4 \mathrm{mg}} \times \frac{100 \mathrm{~mL}}{100 \mathrm{mg}}$ |
| $400=100 \mathrm{x}$ |  |
| $4 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$ |  |

## Formula Method

$\frac{15 \text { units }}{125 \text { units }} \times 250 \mathrm{~mL}$
$0.12 \times 250 \mathrm{~mL}=30 \mathrm{~mL} / \mathrm{hr}$

## Proportion Expressed as Two Ratios

$250 \mathrm{~mL}: 125:: \mathrm{x} \mathrm{mL}: 15$ units

## Proportion Expressed as Two Fractions

$\frac{\mathrm{x} \mathrm{mL}}{15 \text { units }} \times \frac{250 \mathrm{~mL}}{125}$

$$
\begin{aligned}
3750 & =125 \mathrm{x} \\
30 \mathrm{~mL} / \mathrm{hr} & =\mathrm{x}
\end{aligned}
$$

b. The total volume of medication is 125 units and the client receives 15 units/hr.

$$
\begin{gathered}
\frac{125}{15} \sqrt{\frac{8.33}{125.00}}=\text { approximately } 8 \text { hours } \\
\frac{120}{5.0} \\
\frac{4.5}{50}
\end{gathered}
$$

7. Nitroglycerin is prepared by the pharmacy as a standard solution of 50 mg in $250 \mathrm{~mL} / \mathrm{hr}$. We only need to calculate $\mathrm{mL} / \mathrm{hr}$.

Rule: $\frac{\text { number } \mathrm{mL}}{\text { number hr }}=\mathrm{mL} / \mathrm{hr}$

```
250\textrm{mL}
        24
            10}
            96 Set pump at 10 mL/hr.
```

8. a.

Formula Method
1
$\frac{1200 \text { units }}{25900 \text { units }} \times 500 \mathrm{~mL}=24 \mathrm{~mL} / \mathrm{hr}$
Proportion Expressed as Two Fractions $\frac{\mathrm{x} \mathrm{mL}}{1200 \text { units }} \times \frac{500 \mathrm{~mL}}{25,000 \text { units }}$

$$
\begin{aligned}
600000 & =25,000 x \\
\frac{600000}{25000} & =x \\
24 \mathrm{~mL} / \mathrm{hr} & =x
\end{aligned}
$$

b. Rule: $\frac{\text { number } \mathrm{mL}}{\text { number } \mathrm{mL} / \mathrm{hr}}$
$\frac{500 \mathrm{~mL}}{24 \mathrm{~mL} / \mathrm{hr}}=20.8$ or approximately 21 hours
9. a.

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{23 \mathrm{units} / \mathrm{hr}}{250 \text { units }} \times 250 \mathrm{~mL}=23 \mathrm{~mL} / \mathrm{hr}$ | 250 mL : 250 units : : $\mathrm{x} \mathrm{mL}: 23$ units | $\frac{\mathrm{x} \mathrm{~mL}}{23 \mathrm{units}} \times \frac{250 \mathrm{~mL}}{250 \text { units }}$ |
| $23 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$ |  |  |
| b. Rule: $\frac{\text { number } \mathrm{mL}}{\text { number } \mathrm{mL} / \mathrm{hr}}$ |  |  |
| 10. |  |  |
| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| $\frac{100000 \text { units }}{750000 \text { units }} \times 250 \mathrm{~mL}=33 \mathrm{~mL} / \mathrm{hr}$ | $250 \mathrm{~mL}: 750000$ units : : $\mathrm{x} \mathrm{mL}: 100000$ units | $\frac{\mathrm{x} \mathrm{~mL}}{100000 \text { units }} \times \frac{250 \mathrm{~mL}}{750000 \mathrm{units}}$ |
| 2500 |  |  |
| $33 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$ |  |  |

## Self Test 2 Infusion Rates for Drugs Ordered in mg/min

1. a. Order: $1 \mathrm{mg} / \mathrm{min}=60 \mathrm{mg} / \mathrm{hr}(1 \mathrm{mg} / \mathrm{min} \times 60$ minutes $)$

Solution: 2 g in 250 mL
$2 \mathrm{~g}=2000 \mathrm{mg}$

Formula Method

1
$\frac{60 \mathrm{mg} / \mathrm{hr}}{2000 \mathrm{mg}} \times 250 \mathrm{~mL}$
$=7.5 \mathrm{~mL} / \mathrm{hr}$ or $8 \mathrm{~mL} / \mathrm{hr}$
Proportion Expressed as Two Fractions
$\frac{\mathrm{x} \mathrm{mL}}{60 \mathrm{mg}} \times \frac{250 \mathrm{~mL}}{2000 \mathrm{mg}}$

$$
75000=2000 \mathrm{x}
$$

$$
7.5 \mathrm{~mL}=\mathrm{x}
$$

Set pump at $8 \mathrm{~mL} / \mathrm{hr}$.
b. number mL
number mL/hr
$\frac{250 \mathrm{~mL}}{8 \mathrm{~mL} / \mathrm{hr}}=31.25$ or approximately 31 hours; hospital policy requires that IV bags be changed every 24 hours
2. a. Order: $3 \mathrm{mg} / \mathrm{min}=180 \mathrm{mg} / \mathrm{hr}(3 \mathrm{mg} / \mathrm{min} \times 60$ minutes $)$

Solution: 1 g in 250 mL
$1 \mathrm{~g}=1000 \mathrm{mg}$


Set pump at $60 \mathrm{~mL} / \mathrm{hr}$.
b. number mL
number mL/hr
$\frac{500 \mathrm{~mL}}{60 \mathrm{~mL} / \mathrm{hr}}=8.3$ or approximately 8 hours
4. Order: $1 \mathrm{mg} / \mathrm{min}=60 \mathrm{mg} / \mathrm{hr}(1 \mathrm{mg} / \mathrm{min} \times 60$ minutes $)$

Solution: 450 mg in 250 mL
Formula Method
\(\frac{5}{\substack{\frac{60 \mathrm{mg} / \mathrm{hr}}{450 \mathrm{mg}} \times 250 \mathrm{~mL} <br>

9}}\)| 33.33 or $33 \mathrm{~mL} / \mathrm{hr}$ |
| :--- |

## Proportion Expressed as Two Ratios

$\overleftrightarrow{250 \mathrm{~mL}: 450 \mathrm{mg}:: \mathrm{x} \mathrm{mL}: 60 \mathrm{mg}}$

$$
\begin{aligned}
1500 & =45 x \\
\frac{1500}{45} & =x \\
33.33 & =x
\end{aligned}
$$

Set the pump at $33 \mathrm{~mL} / \mathrm{hr}$. Run for 6 hours.
5. a. Order: $1 \mathrm{mg} / \mathrm{min}=60 \mathrm{mg} / \mathrm{hr}(1 \mathrm{mg} / \mathrm{min} \times 60$ minutes $)$

Solution: 2 g in 500 mL
$2 \mathrm{~g}=2000 \mathrm{mg}$

Formula Method
1
$\frac{60 \mathrm{mg} / \mathrm{hr}}{2000 \mathrm{mg}} \times 50 \mathrm{c} \mathrm{mL}=$ 4
$15 \mathrm{~mL} / \mathrm{hr}$
Proportion Expressed as Two Fractions
$\frac{\mathrm{x} \mathrm{mL}}{60 \mathrm{mg}} \times \frac{500 \mathrm{~mL}}{2000 \mathrm{mg}}$

$$
30000=2000 x
$$

$$
15 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}
$$

Set the pump at $15 \mathrm{~mL} / \mathrm{hr}$.
b. $\frac{\text { number } \mathrm{mL}}{\text { number } \mathrm{mL} / \mathrm{hr}}$
$\frac{500 \mathrm{~mL}}{15 \mathrm{~mL} / \mathrm{hr}}=33.3$ or approximately 33 hours; hospital policy requires that IV bags be changed every 24 hours

## Self Test 3 Infusion Rates for Drugs Ordered in mcg/min, mcg/kg/min, milliunits/min

1. Order: $800 \mathrm{mcg} / \mathrm{min}$

Standard solution: 800 mg in 250 mL D5W
Step 1. $\frac{800 \mathrm{mg}}{250 \mathrm{~mL}}=3.2 \mathrm{mg} / \mathrm{mL}$
Step 2. $3.2 \mathrm{mg}=3200 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{3200}{60}=53.33 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

Formula Method
$\frac{800 \mathrm{mcg} / \mathrm{min}}{53.33 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}$
$=15 \mathrm{~mL} / \mathrm{hr}$

| Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: |
| $1 \overleftrightarrow{\mathrm{~mL}: 53.33 \mathrm{mcg} / \mathrm{min}:: \mathrm{x} \mathrm{mL}: 800 \mathrm{mcg} / \mathrm{min}}$ | $\frac{1 \mathrm{~mL}}{53.33} \times \frac{\mathrm{x} \mathrm{~mL}}{800 \mathrm{mcg} / \mathrm{min}}$ |
| $800=53.33 \mathrm{x}$ |  |
| 800 |  |
| $15 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$ |  |

Set the pump: total number $\mathrm{mL}=250$ (standard solution); $\mathrm{mL} / \mathrm{hr}=15$
2. Order: $12 \mathrm{mcg} / \mathrm{min}$

Standard solution: 4 mg in 250 mL D5W
Step 1. $\frac{4 \mathrm{mg}}{250 \mathrm{~mL}}=0.016 \mathrm{mg} / \mathrm{mL}$
Step 2. $0.016 \mathrm{mg}=16 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{16 \mathrm{mcg}}{60 \mathrm{~min}}=0.27 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for mL/hr:

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{12 \mathrm{mcg} / \mathrm{min}}{0.27 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}=44 \mathrm{~mL} / \mathrm{hr}$ | $1 \mathrm{~mL}: 0.27 \mathrm{mcg} / \mathrm{min}:: \mathrm{x} \mathrm{mL}: 12 \mathrm{mcg} / \mathrm{min}$ | $\frac{1 \mathrm{~mL}}{0.27} \times \frac{\mathrm{x} \mathrm{~mL}}{12 \mathrm{mcg} / \mathrm{min}}$ |
|  | $12=0.27 \mathrm{x}$ |  |
|  | $\frac{12}{0.27}$ |  |
| Set the pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=44$ |  |  |

3. Order: $5 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Weight, 100 kg
Standard solution: 1 g in 250 mL
To obtain the order in mcg:
multiply $100 \mathrm{~kg} \times 5 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$
100 kg
$\times 5 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$
$500 \mathrm{mcg} / \mathrm{min}$ (order)
Step 1. $1 \mathrm{~g}=1000 \mathrm{mg}$
$\frac{1000 \mathrm{mg}}{250 \mathrm{~mL}}=4 \mathrm{mg} / \mathrm{mL}$
Step 2. $4 \mathrm{mg}=4000 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{4000}{60}=66.67 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

# Formula Method <br> $\begin{aligned} & \frac{500 \mathrm{mcg} / \mathrm{min}}{66.67 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}=7.49 \\ & \text { or } 8 \mathrm{~mL} / \mathrm{hr}\end{aligned}$ 

Proportion Expressed
as Two Ratios
$1 \mathrm{~mL}: 66.67 \mathrm{mcg} / \mathrm{min}:: x \mathrm{~mL}: 500 \mathrm{mcg} / \mathrm{min}$

Proportion Expressed as Two Fractions
$\frac{1 \mathrm{~mL}}{66.67} \times \frac{\mathrm{x} \mathrm{mL}}{500 \mathrm{mcg} / \mathrm{min}}$

$$
\begin{aligned}
500 & =66.67 x \\
\frac{500}{66.67} & =x \\
7.5 \text { or } 8 & =x
\end{aligned}
$$

Set the pump: total $\# \mathrm{~mL}=250$ (standard solution); $\mathrm{mL} / \mathrm{hr}=7.5$ or 8 mL
4. Order: $7 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Standard solution: 500 mg in 250 mL D5W
Patient's wgt, 70 kg

$$
70 \mathrm{~kg}
$$

The patient weighs $\frac{\times 7}{490 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}}$
Step 1. $\frac{500 \mathrm{mg}}{250 \mathrm{~mL}}=2 \mathrm{mg} / \mathrm{mL}$
Step 2. $2 \times 1000=2000 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{2000}{60}=33.33 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :
Formula Mothod
$\frac{490 \mathrm{mcg} / \mathrm{min}}{33.33 \mathrm{mcg} / \mathrm{mL} / \mathrm{min}} \times 1 \mathrm{~mL}=\mathrm{x}$
$\mathrm{x}=14.7$ or $15 \mathrm{~mL} / \mathrm{hr}$

$$
\begin{aligned}
& \begin{array}{c}
\text { Proportion Expressed } \\
\text { as Two Ratios }
\end{array} \begin{array}{c}
\text { Proportion Expressea } \\
\text { as Two Fractions }
\end{array} \\
& \begin{aligned}
\stackrel{\mathrm{mL}: 33.33 \mathrm{mcg} / \mathrm{min}:: \mathrm{x} \mathrm{~mL}: 490 \mathrm{mcg} / \mathrm{min}}{ } \mid & \frac{1 \mathrm{~mL}}{33.33} \times \frac{\mathrm{x} \mathrm{~mL}}{490 \mathrm{mcg} / \mathrm{min}}
\end{aligned} \\
& 490=33.33 \mathrm{x} \\
& \frac{490}{33.33}=\mathrm{x} \\
& 14.7 \text { or } 15 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}
\end{aligned}
$$

Proportion Expressed as Two Fractions

Set the pump: total number $\mathrm{mL}=250$ (standard solution); $\mathrm{mL} / \mathrm{hr}=15$
5. Order: $10 \mathrm{mcg} / \mathrm{min}$

Standard solution: 50 mg in 250 mL
Step 1. $\frac{50 \mathrm{mg}}{250 \mathrm{~mL}}=0.2 \mathrm{mg} / \mathrm{mL}$
Step 2. $0.2 \times 1000=200 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{200 \mathrm{mcg}}{60 \mathrm{~mL}}=3.33 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

Formula Method
$\frac{10 \mathrm{mcg} / \mathrm{min}}{3.33 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}=\mathrm{x}$
$\mathrm{x}=3 \mathrm{~mL} / \mathrm{hr}$

Proportion Expressed
as Two Ratios
$1 \mathrm{~mL}: 3.33 \mathrm{mcg} / \mathrm{min}:: \mathrm{x} \mathrm{mL}: 10 \mathrm{mcg} / \mathrm{min}$

Proportion Expressed as Two Fractions
$\frac{1 \mathrm{~mL}}{3.33} \times \frac{\mathrm{x} \mathrm{mL}}{10 \mathrm{mcg} / \mathrm{min}}$

$$
\begin{aligned}
10 & =3.33 \mathrm{x} \\
\frac{10}{3.33} & =3.33
\end{aligned}
$$

Set the pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=3$

$$
3 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}
$$

6. Order: 0.5 milliunit/min

Standard solution: 10 units in 1000 mL NS
Step 1. $\frac{10 \text { units }}{1000 \mathrm{~mL}}=0.01$ units $/ \mathrm{mL}$
Step 2. 1 unit $=1000$ milliunits
0.01 units $=10$ milliunits

Step 3. $\frac{10}{60}=0.167$ milliunit $/ \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

## Formula Method

0.5 milliunit/min
0.167 milliunit/min $\times 1 \mathrm{~mL}$

Set pump at $3 \mathrm{~mL} / \mathrm{hr}$

## Proportion Expressed as Two Ratios

$1 \mathrm{~mL}: 0.167$ milliunit $:: \times 10.5$ milliunit

Proportion Expressed as Two Fractions
$\frac{1 \mathrm{~mL}}{0.167 \text { milliunit } / \mathrm{min}}=\frac{\mathrm{x}}{0.5 \text { milliunit } / \min }$

$$
\frac{0.5 \mathrm{~mL}}{0.167}=2.99=\mathrm{x}
$$

7. Order: $4 \mathrm{mcg} / \mathrm{min}$

Solution: 2 mg in 250 mL
Step 1. $\frac{2 \mathrm{mg}}{250 \mathrm{~mL}}=0.008 \mathrm{mg} / \mathrm{mL}$
Step 2. $0.008 \times 1000=8 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{8 \mathrm{mcg}}{60 \mathrm{~mL}}=0.133 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

## Formula Method <br> $\frac{4 \mathrm{mcg} / \mathrm{min}}{0.133 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}=\mathrm{x}$ <br> $\mathrm{x}=30 \mathrm{~mL} / \mathrm{hr}$

## Proportion Expressed as Two Ratios

$1 \mathrm{~mL}: 0.133 \mathrm{mcg} / \mathrm{min}:: \mathrm{x} \mathrm{mL}: 4 \mathrm{mcg} / \mathrm{min}$

Proportion Expressed
as Two Fractions $\frac{1 \mathrm{~mL}}{0.133} \times \frac{\mathrm{x} \mathrm{mL}}{4 \mathrm{mcg} / \mathrm{min}}$

Set the pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=30$

$$
\begin{aligned}
4 & =0.133 x \\
\frac{4}{0.133} & =x \\
30 \mathrm{~mL} & =x
\end{aligned}
$$

8. Order: $50 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Solution: 2.5 g in 250 mL
Weight: 58 kg
$58 \mathrm{~kg} \times 50 \mathrm{mcg}=2900 \mathrm{mcg}($ order $)$
Step 1. $2.5 \mathrm{~g}=2500 \mathrm{mg}$ $\frac{2500 \mathrm{mg}}{250 \mathrm{~mL}}=10 \mathrm{mg} / \mathrm{mL}$

Step 2. $10 \times 1,000=10,000 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{10000}{60}=166.67 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{2900 \mathrm{mcg} / \mathrm{min}}{166.67 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}=17 \mathrm{~mL} / \mathrm{hr}$ | $1 \overleftrightarrow{\mathrm{~mL}: 166.67 \mathrm{mcg} / \mathrm{min}:: \mathrm{x} \mathrm{mL}: 2900 \mathrm{mcg} / \mathrm{min}}$ | $\frac{1 \mathrm{~mL}}{166.67} \times \frac{\mathrm{x} \mathrm{~mL}}{2900 \mathrm{mcg} / \mathrm{min}}$ |

Set the pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=17$

$$
2900=166.67 x
$$

$$
\frac{2900}{166.67}=x
$$

$$
17 \mathrm{~mL}=\mathrm{x}
$$

9. Order: $2 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Solution: 50 mg in 250 mL
Weight: 80 kg

$$
80 \mathrm{~kg} \times 2 \mathrm{mcg}=160 \mathrm{mcg}(\text { order })
$$

Step 1. $\frac{50 \mathrm{mg}}{250 \mathrm{~mL}}=0.2 \mathrm{mg} / \mathrm{mL}$
Step 2. $0.2 \mathrm{mg}=200 \mathrm{mcg}$

$$
0.2=200 \mathrm{mcg} / \mathrm{mL}
$$

Step 3. $\frac{200 \mathrm{mg}}{60 \mathrm{~mL}}=3.33 \mathrm{mcg} / \mathrm{mL}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

$$
\begin{aligned}
& \text { Formula Mothod } \\
& \frac{160 \overline{\mathrm{mcg} / \mathrm{min}}}{3.33 \mathrm{mcg} / \mathrm{min}} \\
& x=48
\end{aligned}
$$

Proportion Expressed as Two Fractions $\frac{1 \mathrm{~mL}}{3.33} \times \frac{\mathrm{x} \mathrm{mL}}{160 \mathrm{mcg} / \mathrm{min}}$

$$
\begin{aligned}
& \begin{array}{c}
\text { Proportion Expressed } \\
\text { as Two Ratios }
\end{array} \\
& 1 \overleftrightarrow{\mathrm{~mL}: 3.33 \mathrm{mcg} / \mathrm{min}:: \times \mathrm{xL}: 160 \mathrm{mcg} / \mathrm{min}} \\
& 160=3.33 x \\
& \frac{160}{3.33}=x \\
& 48=x
\end{aligned}
$$

10. Order: $200 \mathrm{mcg} / \mathrm{min}$

Solution: 0.1 g in 100 mL
100 mg in 100 mL
Step 1. $\frac{100 \mathrm{mg}}{100 \mathrm{~mL}}=1 \mathrm{mg} / \mathrm{mL}$
Step 2. $1 \mathrm{mg}=1000 \mathrm{mcg}$
$1000 \mathrm{mcg} / 1 \mathrm{~mL}$
Step 3. $\frac{1000 \mathrm{mg}}{60}=16.67 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{200 \mathrm{mcg} / \mathrm{min}}{16.67 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}=\mathrm{x}$ | $1 \overleftrightarrow{\mathrm{~mL}: 16.67:: \mathrm{x} \mathrm{~mL}: 200} \mathrm{mcg} / \mathrm{min}$ | $\frac{1 \mathrm{~mL}}{16.67} \times \frac{\mathrm{x} \mathrm{~mL}}{200 \mathrm{mcg} / \mathrm{min}}$ |
| $\mathrm{x}=11.99$ or $12 \mathrm{~mL} / \mathrm{hr}$ | $200=16.67 \mathrm{x}$ |  |
| Set the pump: total number $\mathrm{mL}=100 ; \mathrm{mL} / \mathrm{hr}=12$ |  |  |

## Self Test 4 Use of Nomogram

1. a. Dose is correct; $20 \mathrm{mg} / \mathrm{m}^{2} \times 1.96=39 \mathrm{mg}$
b. Order calls for 250 mL over $1 / 2$ hour, but pump is set in $\mathrm{mL} / \mathrm{hr}$. Double 250 mL .

Setting: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=500$.
The pump will deliver 250 mL in $1 / 2$ hour.
2. a. Correct; $130 \mathrm{mg} / \mathrm{m}^{2} \times 1.77=230 \mathrm{mg}$
b. Pour two $100-\mathrm{mg}$ tabs and three $10-\mathrm{mg}$ tabs.
3. a. Correct; $40 \mathrm{mg} / \mathrm{m}^{2} \times 2=80 \mathrm{mg}$
b. Rapidly flowing IV is the primary line. Set the secondary pump: total number $\mathrm{mL}, 80 ; \mathrm{mL} / \mathrm{hr}, 80$ (see Chapter 8 for IVPB).
4. a. Correct; $200 \mathrm{mg} / \mathrm{m}^{2} \times 2=400 \mathrm{mg}$

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{8}{\frac{8 \theta 0 \mathrm{mg}}{50 \mathrm{mg}}} \times 1 \text { capsule }=8 \text { capsules }$ | 1 capsule : $50 \mathrm{mg}:: \mathrm{x}$ capsules : 400 mg | $\frac{x \text { capsule }}{400 \mathrm{mg}} \times \frac{1 \text { capsule }}{50 \mathrm{mg}}$ |
|  | $400=50 \mathrm{x}$ |  |
|  | 8 capsules $=\mathrm{x}$ |  |

5. a. Correct; $135 \mathrm{mg} / \mathrm{m}^{2} \times 1.6=216 \mathrm{mg}$
b. $1 / 2 \mathrm{~L}=500 \mathrm{~mL}$ over $3 \mathrm{hr} ; \frac{500}{3} \frac{166.6}{500}=167$

Set the pump: total number $\mathrm{mL}=500 ; \mathrm{mL} / \mathrm{hr}=167$

## Self Test 5

1. a. Bolus with 40 units/kg
$40 \times 70=2800$ units
b. increase rate by 2 units/kg per hour
$2 \times 70=140$ units

Formula Method
$\frac{140 \text { units }}{25000 \text { units }} \times 500 \mathrm{~mL}=\mathrm{x}$
$\mathrm{x}=2.8 \mathrm{~mL}$

## Proportion Expressed as Two Ratios

500 mL : 25000 units : : $\mathrm{x} \mathrm{mL}: 140$ units

Proportion Expressed as Two Fractions


$$
\frac{500 \times 140}{25000}=x
$$

Increase rate by 2.8 mL

$$
2.8 \mathrm{~mL}=\mathrm{x}
$$

$25.2+2.8=28 \mathrm{~mL} / \mathrm{hr}$
2. a. Bolus with 40 units/kg
$40 \times 70=2800$ units
b. Increase rate by 3 units/kg/hr
$3 \times 70=210$ units

## Formula Method

$\frac{210 \text { units }}{25000 \text { units }} \times 250 \mathrm{~mL}=\mathrm{x}$
$\mathrm{x}=4.2 \mathrm{~mL}$

## Proportion Expressed as Two Ratios

500 mL : 25000 units : : $\mathrm{x} \mathrm{mL}: 210$ units

Proportion Expressed as Two Fractions
$\frac{500 \mathrm{~mL}}{25000 \text { units }} \times \frac{\mathrm{x} \mathrm{mL}}{210 \text { units }}$

$$
\frac{500 \times 210}{25000}=x
$$

Increase rate by 4.2 mL

$$
4.2 \mathrm{~mL}=\mathrm{x}
$$

$25.2+4.2=29.4 \mathrm{~mL} / \mathrm{hr}$
3. a. No bolus
b. Decrease rate by 1 unit $/ \mathrm{kg} / \mathrm{hr}$
$1 \times 70=70$ units

Formula Method
$\frac{70 \text { units }}{25000 \text { units }} \times 500 \mathrm{~mL}=\mathrm{x}$
$\mathrm{x}=1.4 \mathrm{~mL}$

Proportion Expressed
as Two Ratios
500 mL : 25000 units : : x mL : 70 units

Proportion Expressed as Two Fractions
$\frac{500 \mathrm{~mL}}{25000 \text { units }} \times \frac{\mathrm{x} \mathrm{mL}}{70 \text { units }}$

$$
\begin{aligned}
\frac{70 \times 500}{25000} & =x \\
1.4 \mathrm{~mL} & =x
\end{aligned}
$$

Decrease drip by 1.4 mL
$25.2-1.4=23.8 \mathrm{~mL} / \mathrm{hr}$
4. a. No bolus
b. Stop infusion for 1 hour Decrease rate by 2 units/kg/hr $2 \times 70=140$ units

Formula Method
$\frac{140 \text { units }}{25000 \text { units }} \times 500 \mathrm{~mL}=\mathrm{x}$ $\mathrm{x}=2.8 \mathrm{~mL}$

Proportion Expressed as Two Ratios
$500 \mathrm{~mL}: 25000$ units : : x mL : 140 units

Proportion Expressed as Two Fractions
$\frac{500 \mathrm{~mL}}{25000 \text { units }} \times \frac{\mathrm{x} \mathrm{mL}}{140 \text { units }}$

$$
\begin{gathered}
\frac{500 \times 140}{25000}=x \\
2.8 \mathrm{~mL}=\mathrm{x}
\end{gathered}
$$

Decrease rate by 2.8 mL
$25.2-2.8=22.4 \mathrm{~mL} / \mathrm{hr}$

## Self Test 6 Answer

1. a. Increase infusion 3 units/hr.

11 units/hr +3 units/hr $=14$ units/hr

| Formula Method | Proportion Expressed <br> as Two Ratios | Proportion Expressed <br> as Two Fractions |
| :---: | :---: | :---: |
| $\frac{14 \mathrm{units} / \mathrm{hr}}{0.5 \mathrm{units}} \times 1 \mathrm{~mL}$ | $1 \mathrm{~mL}: 0.5 \mathrm{units}:: \mathrm{x} 14 \mathrm{units} / \mathrm{hr}$ <br> $1 \mathrm{~mL} \times 14 \mathrm{units} / \mathrm{hr}=0.5 \mathrm{units} \mathrm{x}$ | $\frac{1 \mathrm{~mL}}{0.5 \mathrm{units}} \times \frac{\mathrm{x} \mathrm{mL}}{14 \mathrm{units} / \mathrm{hr}}$ |
| $\frac{1 \mathrm{~mL} \times 14 \mathrm{units}}{0.5 \mathrm{units} / \mathrm{hr}}=\mathrm{x}$ |  |  |
| $28 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$ |  |  |

b. Set IV Pump at $28 \mathrm{~mL} / \mathrm{hr}$. Recheck blood glucose in 1 hour.
2. Discontinue (stop) infusion. Recheck glucose in $\mathrm{q} 30 \mathrm{~min} \times 4$.
3. a. Restart infusion. Reduce rate by 3 units/hr ( 14 units -3 units $=11$ units).
Formula Metho
$\frac{11 \text { units } / \mathrm{hr}}{0.5 \text { units }} \times 1 \mathrm{~mL}$

## Proportion Expressed as Two Ratios

$1 \mathrm{~mL}: 0.5$ units :: x 11 units/hr

$$
\begin{array}{r}
\frac{1 \mathrm{~mL} \times 11 \text { units }}{0.5 \mathrm{units} / \mathrm{hr}}=\mathrm{x} \\
22 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}
\end{array}
$$

b. Set IV pump at $22 \mathrm{~mL} / \mathrm{hr}$. Recheck blood glucose in 30 minutes.

## Self Test 7 Infusion Problems

1. A pump is needed. This is set in $\mathrm{mL} / \mathrm{hr}$. The order calls for $0.5 \mathrm{mg} / \mathrm{min}$. Because there are 60 minutes in an hour, multiply $0.5 \mathrm{mg} \times 60=30 \mathrm{mg} / \mathrm{hr}$. The standard solution is 200 mg in 200 mL . This is a $1: 1$ solution, so $30 \mathrm{mg} / \mathrm{hr}=30 \mathrm{~mL} / \mathrm{hr}$. You can also solve using the three methods:

Formula Method
$\frac{30 \mathrm{mg} / \mathrm{hr}}{\frac{1}{200 \mathrm{mg}}} \times \stackrel{1}{200 \mathrm{~mL}}=30 \mathrm{~mL} / \mathrm{hr}$

Proportion Expressed as Two Ratios
$200 \overleftrightarrow{\mathrm{~mL}: 200 \mathrm{mg}:: \mathrm{x} \mathrm{mL}: 30 \mathrm{mg}}$

Proportion Expressed as Two Fractions
$\frac{\mathrm{x} \mathrm{mL}}{30 \mathrm{mg} / \mathrm{hr}} \times \frac{200 \mathrm{~mL}}{200 \mathrm{mg}}$

$$
\begin{aligned}
200 \times 30 & =200 \mathrm{x} \\
30 \mathrm{~mL} / \mathrm{hr} & =\mathrm{x}
\end{aligned}
$$

Total number $\mathrm{mL}=200 ; \mathrm{mL} / \mathrm{hr}=30$
2. Aminophylline comes $250 \mathrm{mg} / 10 \mathrm{~mL}$. Remove 10 mL from the IV bag and add 10 mL drug. Order is $75 \mathrm{mg} / \mathrm{hr}$. You have 250 mg in 250 mL (a 1:1 solution); therefore, set the pump at $75 \mathrm{~mL} / \mathrm{hr}$. You can also solve using the three methods:
Formula Mothod
$\frac{75 \mathrm{mg} / \mathrm{hr}}{250 \mathrm{mg}} \times \stackrel{1}{1} \times 250 \mathrm{~mL}=75 \mathrm{~mL} / \mathrm{hr}$

## Proportion Expressed as Two Ratios

$250 \overleftrightarrow{\mathrm{~mL}: 250 \mathrm{mg}:: \mathrm{x} \mathrm{mL}: 75 \mathrm{mg}}$

Proportion Expressed as Two Fractions

$$
\frac{\mathrm{x} \mathrm{~mL}}{75 \mathrm{mg}} \times \frac{20 \mathrm{~mL}}{250 \mathrm{mg}}
$$

$$
\begin{aligned}
250 \times 74 & =250 \mathrm{x} \\
75 & =\mathrm{x}
\end{aligned}
$$

Total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=75$
3. $2 \mathrm{~g}=2000 \mathrm{mg}$

A pump is needed and is set in $\mathrm{mL} / \mathrm{hr}$. Order calls for $4 \mathrm{mg} / \mathrm{min}$. There are 60 minutes in an hour: $60 \times 4=240 \mathrm{mg} / \mathrm{hr}$
Formula Mothod
$\frac{60}{\frac{240 \mathrm{mg} / \mathrm{hr}}{2000 \mathrm{mg}}} \times 500 \mathrm{~mL}=60 \mathrm{~mL} / \mathrm{hr}$
$\frac{4}{1}$

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\text { Proportion Expressed } \\
\text { as Two Ratios }
\end{array} \\
\stackrel{500 \mathrm{~mL}: 2000 \mathrm{mg}:: \mathrm{xmL}: 240 \mathrm{mg}}{ }
\end{array} \begin{array}{c}
\text { Proportion Expressed } \\
\text { as Two Fractions }
\end{array} \\
& \left.\qquad \begin{array}{rl}
240 \times 5 & =20 \mathrm{x} \\
60 & =\mathrm{x} \mathrm{~mL}
\end{array}\right) \times \frac{50 \mathrm{~mL}}{200 \mathrm{~mL}}
\end{aligned}
$$

Total number $\mathrm{mL}=500 ; \mathrm{mL} / \mathrm{hr}=60$
4. Add acyclovir. Calculate the amount:

## Formula Method

$\frac{8}{\frac{8}{4 \theta 0 \mathrm{mg}}} 5 \times 1 \mathrm{~mL}=8 \mathrm{~mL}$
Proportion Expressed
as Two Ratios as Two Ratios
$1 \mathrm{~mL}: 50 \mathrm{mg}:: \mathrm{x} \mathrm{mL}: 400 \mathrm{mg}$

Proportion Expressed as Two Fractions
$\frac{\mathrm{x} \mathrm{mL}}{400 \mathrm{mg}} \times \frac{1 \mathrm{~mL}}{50 \mathrm{mg}}$

$$
\begin{aligned}
400 & =50 \mathrm{x} \\
8 & =\mathrm{x}
\end{aligned}
$$

Remove 8 mL fluid from the IV bag and add 8 mL of drug. $8 \mathrm{~mL} \times 50 \mathrm{mg} / \mathrm{mL}=400 \mathrm{mg}$. This is now $400 \mathrm{mg} / 100 \mathrm{~mL}$.

```
\(\frac{\text { number } \mathrm{mL}}{\text { number } h \mathrm{r}}=\mathrm{mL} / \mathrm{hr}\)
50
\(\frac{1 \theta 0 \mathrm{~mL}}{\underset{1}{2 \mathrm{hr}}}=50 \mathrm{~mL} / \mathrm{hr}\) on a pump
```

Total number $\mathrm{mL}=100 ; \mathrm{mL} / \mathrm{hr}=50$
5. 5000 units/hr $\times 5 \mathrm{hr}=25,000$ units in 250 mL D5W. Need five vials. Dissolve each with 1 mL sterile water. 5 vials $=25,000$ units in 5 mL . Add to 250 mL D5W.

Calculate the $\mathrm{mL} / \mathrm{hr}$ :

## Formula Method

$\frac{5000 \mathrm{unith} / \mathrm{hr}}{\substack{25,7000 \\ \text { rounits } \\ 1}} \times 25 \mathrm{O} \mathrm{mL}$
$=50 \mathrm{~mL} / \mathrm{hr}$ on a pump
$\xrightarrow{\substack{\text { Proportion Expressed } \\ \text { as Two Ratios } \\ 250 \mathrm{~mL}: 25000 \text { units }:: \times \mathrm{mL}: 5000 \\ \\ \stackrel{\text { units }}{ }}}$

## Proportion Expressed as Two Fractions

1
$\frac{\mathrm{x} \mathrm{mL}}{5000 \text { units }} \times \frac{250 \mathrm{~mL}}{\frac{25,000 \text { units }}{100}}$

$$
\begin{aligned}
5000 & =100 \mathrm{x} \\
50 \mathrm{~mL} / \mathrm{hr} & =\mathrm{x}
\end{aligned}
$$

6. Logic: magnesium sulfate comes in a $50 \%$ solution; 50 g in $100 \mathrm{~mL}=0.5 \mathrm{~g}$ in 1 mL

Calculate the $\mathrm{mL} / \mathrm{hr}$ :

## Formula Method

$\frac{4 \mathrm{~g}}{0.5 \mathrm{~g}} \times 1 \mathrm{~mL}=$
$\mathrm{x}=8 \mathrm{~mL}$

Proportion Expressed
as Two Ratios
$1 \overleftrightarrow{\mathrm{~mL}: 0.5 \mathrm{~g}:: \mathrm{x} \mathrm{mL}: 4 \mathrm{~g}}$

## Proportion Expressed as Two Fractions

$$
\frac{\mathrm{x} \mathrm{~mL}}{4 \mathrm{~g}}=\frac{1 \mathrm{~mL}}{0.5 \mathrm{~g}}
$$

$$
\begin{aligned}
4 \mathrm{~g} & =0.5 \mathrm{x} \\
8 \mathrm{~mL} & =x
\end{aligned}
$$

Add 8 mL MgSO 44 to 100 mL D5W. Infuse over 30 minutes. The pump is set in $\mathrm{mL} / \mathrm{hr}$ ( 60 minutes).
$\frac{60 \text { minutes }}{30 \text { minutes }}=2$
Multiply $100 \mathrm{~mL} \times 2=200 \mathrm{~mL} / \mathrm{hr}$
Total number $\mathrm{mL}=100 \mathrm{~mL}$
7. Order: $80 \mathrm{mcg} / \mathrm{min}$

Supply: 50 mg in 250 mL
Step 1. $\frac{50 \mathrm{mg}}{250 \mathrm{~mL}}=0.2 \mathrm{mg} / \mathrm{mL}$
Step 2. $0.2 \times 1000=200 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{200}{60}=3.33 \mathrm{mcg} / \mathrm{min}$

Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

## Formula Method

$\frac{80 \mathrm{mcg} / \mathrm{min}}{3.33 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}=\mathrm{x}=24$

Proportion Expressed as Two Ratios
$1 \mathrm{~mL}: 3.33 \mathrm{mcg} / \mathrm{min}:: \mathrm{x} \mathrm{mL}: 80 \mathrm{mcg} / \mathrm{min}$

Proportion Expressed as Two Fractions
$\frac{1 \mathrm{~mL}}{3.33} \times \frac{\mathrm{x} \mathrm{mL}}{80 \mathrm{mcg} / \mathrm{min}}$

$$
80=3.33 x
$$

$$
\frac{80}{3.33}=x
$$

Set pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=24$

$$
24=x
$$

8. Order: $6 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$

Solution: $500 \mathrm{mg} / 250 \mathrm{~mL}$
wgt: 82 kg
a. $6 \mathrm{mcg} / \mathrm{kg} \times 82 \mathrm{~kg}=492 \mathrm{mcg}$

Step 1. $\frac{500 \mathrm{mg}}{250 \mathrm{~mL}}=2 \mathrm{mg} / \mathrm{mL}$
Step 2. $2 \times 1000=2000 \mathrm{mcg} / \mathrm{mL}$
Step 3. $\frac{2000}{60}=33.33 \mathrm{mcg} / \mathrm{min}$
Step 4. Solve for $\mathrm{mL} / \mathrm{hr}$ :

Formula Method
$\frac{492 \mathrm{mcg} / \mathrm{min}}{33.33 \mathrm{mcg} / \mathrm{min}} \times 1 \mathrm{~mL}=14.7$ or 15
$15 \mathrm{~mL} / \mathrm{hr}$

Proportion Expressed as Two Ratios
$1 \mathrm{~mL}: 492 \mathrm{mcg} / \mathrm{min}:: x \mathrm{~mL}: 33.33 \mathrm{mcg} / \mathrm{min}$

## Proportion Expressed as Two Fractions

$\frac{1 \mathrm{~mL}}{33.33} \times \frac{\mathrm{x} \mathrm{mL}}{492 \mathrm{mcg} / \mathrm{min}}$

$$
492=33.33 x
$$

$$
\frac{492}{33.33}=x
$$

14.7 or $15 \mathrm{~mL} / \mathrm{hr}=\mathrm{x}$

Set pump: total number $\mathrm{mL}=250 ; \mathrm{mL} / \mathrm{hr}=15$
9. Order: 2 milliunits/min

Supply: 9 units in 150 mL NS

Step 1. $\frac{9 \text { units }}{150 \mathrm{~mL}}=0.06$ units $/ \mathrm{mL}$

Step 2. 1 unit $=1000$ milliunits
$0.06 \times 1000=60$ milliunits $/ \mathrm{mL}$
Step 3. $\frac{60}{60}=1$ milliunit $/ \mathrm{mL}$
Step 4. Solve for mL/hr:

| Formula Method | Proportion Expressed as Two Ratios | Proportion Expressed as Two Fractions |
| :---: | :---: | :---: |
| $\frac{2 \text { millifunits } / \text { min }}{1 \text { midtifunitmin }} \times 1 \mathrm{~mL}$ | $1 \mathrm{~mL}: 1$ milliunit : : $\mathrm{x} \mathrm{mL}: 2$ milliunits | $\frac{1 \mathrm{~mL}}{1 \text { milliunit }} \times \frac{\mathrm{x} \mathrm{~mL}}{2 \text { milliunits }}$ |

Set pump: total number $\mathrm{mL}=150 \mathrm{~mL} ; \mathrm{mL} / \mathrm{hr}=2$
10. a. Correct; $1.45 \mathrm{~m}^{2} \times 80 \mathrm{mg} / \mathrm{m}^{2}$
b. $1 \mathrm{~L}=1000 \mathrm{~mL}$

$$
\frac{\text { number mL }}{\text { number hr }}=\frac{\stackrel{250}{1000 \mathrm{~mL}}}{\frac{1}{1} \mathrm{hr}}=250 \mathrm{~mL} / \mathrm{hr}
$$

Set the pump: total number $\mathrm{mL}=1000 ; \mathrm{mL} / \mathrm{hr}=250$


[^0]:    $\frac{\text { Number } \mathrm{mL}}{\text { Number } \mathrm{mL} / \mathrm{hr}}$
    $\frac{250 \mathrm{~mL}}{65 \mathrm{~mL} / \mathrm{hr}}=3.8$ or approximately 4 hours

